Cosmic Ray propagation in the Galaxy with DRAGON2

Carmelo Evoli (Gran Sasso Science Institute)

Sources of Galactic cosmic rays - Paris - 8th of December 2016

DRAGON2 in the world

Energies and rates of the cosmic-ray particles

Cosmic-ray flux

- Almost a perfect power-law over 12 energy decades.
- Observed at energy higher than terrestrial laboratories!
- Direct measurements versus air-cascade reconstructions.
- Anti-matter component.
- Transition from galactic to extra-galactic?
- Energy density in equipartition with starlight, turbulent gas motions and magnetic fields.

Cosmic-ray composition as a probe of Galactic origin

The Master equation

Berezinskii et al. (1990)

Berezinskii et al. (1990)

$$-D_{\odot} \left(\frac{p}{p_{0}}\right)^{\delta} \frac{\partial^{2}}{\partial x^{2}} n_{i} - \frac{v_{A}^{2} p_{0}^{4}}{D_{\odot}} \frac{\partial}{\partial p} \left[\left(\frac{p}{p_{0}}\right)^{4-\delta} \frac{\partial}{\partial p} \left(\frac{n_{i}}{p^{2}}\right) \right] - v_{z} \frac{\partial n_{i}}{\partial z} = Q_{\text{sources/sinks}}$$

... far from reality even in QLT
$$(1 + 1)^{2} H = Q_{\text{sources/sinks}}$$

$$(2 + 1)^{2} H = Q_{\text{sources/sinks}}$$

CR diffusion for the "poor physicist"

Assumptions:

- GCR diffuse in the ISM turbulent magnetic field
- The turbulent field can be modeled with a Kolmogorov isotropic power-spectrum
- The turbulent field amplitude is a small fluctuation with respect to the regular component
- Resonant interaction wave-particle

It follows:

$$D=D_0
ho^\delta$$
 where $\delta=2-\gamma=1/3$

• particle's pitch angle follows the variation of the *turbulent* magnetic field due to conservation of the adiabatic invariant:

$$rac{\Delta v_{\parallel}}{v_{\perp}} = rac{\left\langle (B - B_0)^2
ight
angle^{1/4}}{B_0^{1/2}}$$

• resonance function has a Gaussian broadening:

$$R_n^{\rm NLT}(k_{\parallel}v_{\parallel}-\omega\pm n\Omega) = \frac{\sqrt{\pi}}{k_{\parallel}\Delta v_{\parallel}} \exp\left[-\frac{(k_{\parallel}v\mu-\omega\pm n\Omega)^2}{k_{\parallel}^2\Delta v_{\parallel}^2}\right]$$

• damping mechanisms make diffusion environment-dependent:

$$D_{\mu\mu} = \frac{\Omega^2 (1 - \mu^2)}{B_0^2} \int d^3k \, R_n^{\rm NLT}(\mathbf{k}) \left[\frac{k_{\parallel}^2}{k^2} J_n^{\prime 2}(w) I^F(\mathbf{k}) \right]$$

Diffusion in NLT is environment dependent

CE & H. Yan, ApJ, 2014

halo > collisionless dampingdisk > collisionless + viscous damping

Fitting local observables

$$D(E) = \frac{D_0 (E/E_0)^{\delta} \exp(z/z_t)}{\delta}$$

The best constraints on the halo scale height ($z_t > 2$ kpc) are obtained from the galactic diffuse synchrotron emission (G.Di Bernardo, CE, et al., JCAP, 2013)

Primary spectra pre-PAMELA

featureless and universal power-law energy spectra prediction relying on many selfsimilarity assumptions: Fermi acceleration theory, Kolmogorov diffusion...

Today CR measurements reach remarkable precision PAMELA Coll., Science, 2011 - AMS02 Coll., PRL, 2016

Diffusion in the halo different than in the disk

N. Tomassetti, ApJ, 2012

Non-linear CR propagation

Blasi et al., PRL, 2012; S. Recchia et al., arXiv:1604.07682

"we showed that both the gradient and the spectral shape can be explained in a simple model of non-linear CR transport: CRs excite waves through streaming instability in the ionized Galactic halo and are advected with such Alfvén waves. In this model, *the diffusion coefficient is smaller where the source density is larger and this phenomenon enhances the CR density in the inner Galaxy."*

Diffuse emissions: from radio to gamma maps

PLANCK all-sky foreground map

Two year all sky Fermi-LAT map

The gamma-ray sky in 2016

~ 70% of all observed photons coming from the diffuse Galactic emission

The extremely accurate gamma ray maps that FERMI is providing are useful to trace the CR distribution throughout all the Galaxy!

The radial distribution of the diffuse gamma-ray emissivity in the GP R. Yang, F. Aharonian, **CE**, PRD, 2016

Templates based:

- on CO galactic survey of with the CfA 1.2m millimetre-wave Telescope
- the Leiden/Argentine/Bonn (LAB) Survey on HI gas
- dust opacity maps from PLANCK for "dark gas"

Comparison with a single zone model predictions

R. Yang, F. Aharonian, CE, PRD, 2016

Comparison with a single zone model predictions

R. Yang, F. Aharonian, CE, PRD, 2016

see also Gaggero et al., PRD, 2015 (also known as KRAg)

FERMI galactic interstellar emission model (GEIM)

FERMI Collaboration, arXiv:1602.07246

The Master equation

Berezinskii et al. (1990)

what is the impact on the diffuse emissions or on the local spectra of the physical effects we averaged out?

- C. Evoli et al., arXiv:1607.07886
- anisotropic diffusion

$$D_r = D_{0,\perp} \left(\frac{p}{p_0}\right)^{\delta_{\perp}}$$
$$D_z = D_{0,\perp} \left(\frac{p}{p_0}\right)^{\delta_{\perp}} + D_{0,\parallel} \exp\left(-\frac{r}{R_0}\right) \left(\frac{p}{p_0}\right)^{\delta_{\parallel}}$$

- C. Evoli et al., arXiv:1607.07886
- anisotropic diffusion
- modeling transient sources

- C. Evoli et al., arXiv:1607.07886
- anisotropic diffusion
- modeling transient sources
- non-equidistant binning

- C. Evoli et al., arXiv:1607.07886
- anisotropic diffusion
- modeling transient sources
- non-equidistant binning
- a complete set of astrophysical ingredients

- C. Evoli et al., arXiv:1607.07886
- anisotropic diffusion
- modeling transient sources
- non-equidistant binning
- a complete set of astrophysical ingredients
- primary leptons

- C. Evoli et al., arXiv:1607.07886
- anisotropic diffusion
- modeling transient sources
- non-equidistant binning
- a complete set of astrophysical ingredients
- primary leptons
- improved nuclear network model (in preparation)

DRAGON2 solver in Operator Spitting

Operator	L_i	C_i	U_i	b.c.
\mathcal{L}_r	$\frac{D_{rr,i}}{\Delta r_c \Delta r_d} - \frac{D_{rr,i}}{2r_i \Delta r_c} - \frac{D_{rr,i+1} - D_{rr,i-1}}{4\Delta r_c^2}$	$\frac{D_{rr,i}}{\Delta r_c} \bigg[\frac{1}{\Delta r_u} + \frac{1}{\Delta r_d} \bigg]$	$\frac{D_{rr,i}}{\Delta r_c \Delta r_d} - \frac{D_{rr,i}}{2r_i \Delta r_c} - \frac{D_{rr,i+1} - D_{rr,i-1}}{4\Delta r_c^2}$	$egin{array}{l} N_{-1} = N_1 \ N_{n-1} = 0 \end{array}$
\mathcal{L}_z	$rac{D_{zz,i}}{\Delta z_c\Delta z_d} - rac{D_{zz,i+1}-D_{zz,i-1}}{4\Delta z_c^2}$	$rac{D_{zz,i}}{\Delta z_c}\left[rac{1}{\Delta z_u}+rac{1}{\Delta z_d} ight]$	$rac{D_{zz,i}}{\Delta z_c\Delta z_d} - rac{D_{zz,i+1}-D_{zz,i-1}}{4\Delta z_c^2}$	$egin{array}{l} N_0=0\ N_{n-1}=0 \end{array}$
\mathcal{L}_a	$\left\{egin{aligned} rac{v_{i-1}}{\Delta z_d} & (z>0) \ rac{-v_{i-1}}{\Delta z_c} & (z=0) \ 0 & (z<0) \end{aligned} ight.$	$\begin{cases} \displaystyle \frac{v_i}{\Delta z_d} \ (z>0) \\ 0 \ (z=0) \\ \displaystyle \frac{v_i}{\Delta z_u} \ (z<0) \end{cases}$	$\left\{egin{aligned} 0 & (z > 0) \ rac{-v_{i+1}}{\Delta z_c} & (z < 0) \ rac{v_{i+1}}{\Delta z_u} & (z < 0) \end{aligned} ight.$	$egin{array}{l} N_0 = 0 \ N_{n-1} = 0 \end{array}$
\mathcal{L}_p	$-rac{D_{pp,i+1}-D_{pp,i-1}}{4\Delta p_c^2}+rac{D_{pp,i}}{\Delta p_c\Delta p_d}+rac{D_{pp,i-1}}{\Delta p_c p_{i-1}}$	$-rac{D_{pp,i}}{\Delta p_c}\left[rac{1}{\Delta p_u}+rac{1}{\Delta p_d} ight]$	$\frac{D_{pp,i+1}-D_{pp,i-1}}{4\Delta p_c^2} + \frac{D_{pp,i}}{\Delta p_c \Delta p_u} - \frac{D_{pp,i+1}}{\Delta p_c p_{i+1}}$	$egin{aligned} N_0 &= rac{p_0^2}{p_1^2} N_1 \ N_{n-1} &= 0 \end{aligned}$
\mathcal{L}_l	0	$-rac{\dot{p}_i}{p_{i+1}-p_i}$	$-\frac{\dot{p}_{i+1}}{p_{i+1}-p_i}$	$N_{n-1} = 0$

Table 1. Crank-Nicolson coefficients and boundary conditions for the 2D case ($\Delta x_c \equiv \frac{x_{i+1} - x_{i-1}}{2}, \Delta x_u \equiv sx_{i+1} - x_i, \Delta x_d \equiv x_i - x_{i-1}$).

DRAGON2 numerical tests

each operator is 2nd order discretised and tested against an analytical solution

DRAGON2 numerical tests: b.c. in momentum

DRAGON2 energy losses in the ISM

A new modular code

} // namespace

```
#include "TGalaxyGrid.h"
namespace DRAGON {
  class THIDensityNakanishi03 : public TGalaxyGrid
  {
     double h0;
     double n0;
  public:
     THIDensityNakanishi03();
     double distribution(const TVector3d& pos);
  };
  THIDensityNakanishi03::THIDensityNakanishi03() : TGalaxyGrid()
  {
     h0 = 1.06 * pc;
     n0 = 0.94 * (1./cm3);
  }
  double THIDensityNakanishi03::distribution(const TVector3d& pos)
  {
     double rKpc = pos.getR() / kpc;
     double exp1 = exp(-rKpc / 2.4);
     double exp2 = exp(-pow((rKpc - 9.5) / 4.8, 2));
     double densityOnPlane = n0 * (0.6 * exp1 + 0.24 * exp2);
     double scaleHeight = h0 * (116.3 + 19.3 * rKpc + 4.1 * rKpc *
  rKpc - 0.05 * rKpc * rKpc * rKpc);
     return (densityOnPlane * exp(-M_LN2 * pow(pos.z / scaleHeight,
  2)));
  }
```



```
DRAGON2 Libraries
```

Techniques/codes to solve the transport problem

	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) 	Follow each particle: • N particles at t=0 • evolve each of them to t+1 $1D: \Delta z = \pm \sqrt{2D\Delta t}$
Tools	Green functions,Fourier/Bessel expansionDifferential equations	• Numerical recipes/solvers (NAG, GSL libraries)	• Stochastic differential equations (Markov process) + MPI
Pros	Useful to understand the physicsFast (MCMC analyses "simple")	Very simple algebraAny new input easily included	 Statistical properties (along path) No grid but t step (for/back)-ward
cons	Only solve approximate modelNew solution for new problem	Slower, memory for high res."Less" insight in the physics	Even slower (+ statistical errors)Massively parallel problem
Codes and/or references	Webber (1970+) Ptuskin (1980+) Schlickeiser (1990+) USINE (2000+)	GALPROP (Strong et al. 1998) DRAGON (Evoli et al. 2008) PICARD (Kissmann et al., 2013)	Webber & Rockstroh (1997) Farahat et al. (2008) Kopp, Büshing et al. (2012)

Credit: David Maurin (LPSC)

- DRAGON2 aims at solving the kinetic transport equation for CR in the Galaxy under very general assumptions
- unavoidable to match local observables and diffuse emissions (or other not-local observables, e.g., anisotropy) in a consistent model
- or to test non-uniform diffusion: what would be the profile for a D $\sim \exp(-r / 100 \text{ pc})$ at the GC?

- The solution of the diffusion equation depends on a number of assumptions (gas, magnetic field, ISRF, diffusion coefficients, cross-sections,...). Our approach allows quantitative estimates of the uncertainties associated by assuming different models.
- Next step will be to model the feedback by ISM (e.g., selfgenerated diffusion, CR driven wind) and on ISM (e.g., heating by ionisation and waves damping)

- quality of gamma and CR flux data are progressively exceeding the realism of current CR propagation models
- simple recipes (scale invariant injection, diffusion, or unlimited breaks) do not work anymore to explain the global galactic picture
- Theory (read: microphysics) driven improvements in the numerical modelling of CR propagation are desirable at this point