Results from the AMS-02 Cosmic Ray Observatory Five Years in Orbit

Martin Pohl DPNC and CAP Genève Université de Genève

Sources of Galactic Cosmic Rays

APC, Paris, December 7, 2016

In 5 years on ISS, AMS has collected >85 billion charged cosmic rays. AMS is a state-of-the—art particle detector with a lot of redundancy. The data was analysed by at least two independent international teams

Positron fraction

Latest published result based on 20 million e⁺, e⁻ events

3

Data taking to 2024, will allow to explore anisotropies of 1%

The Electron and Positron fluxes

PRL **113**, 121102 (2014)

PHYSICAL REVIEW LETTERS

week ending 19 SEPTEMBER 2014

G

Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

Based on 0.6 million positron events

Latest results based on 1.08 million positron events

AMS 2016

The $(e^+ + e^-)$ flux

PHYSICAL REVIEW LETTERS

week ending 28 NOVEMBER 2014

Precision Measurement of the $(e^+ + e^-)$ Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station

Spectral index of $(e^+ + e^-)$

The $(e^+ + e^-)$ flux versus the electron or positron energy and the result of a single power law fit above 30.2 GeV.

Measurements of the proton spectrum before AMS

The proton flux

PHYSICAL REVIEW LETTERS

week ending 1 MAY 2015

G

Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

AMS proton flux

The spectrum cannot be described by a single power law.

Measurements of Helium spectrum before AMS

The Helium Flux

Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station

The antiproton flux compared to other particle fluxes

The spectra of elementary particles e^+ , \overline{p} , p have the same energy dependence above 60 GeV, e^- does not

Antiproton-to-proton ratio

Proton flux, effect of Solar B-field

The Lithium flux

Light nuclei fluxes <u>×10³</u> AMS 15 [m⁻²sr⁻¹sec⁻¹ GV^{1.7}] Current models -**26 4.0** unexpected He Current models unexpected **R**^{2.7} 13 2.0 5 Flux × Current models unexpected Momentum/Charge [GV] 0 Ω $10^{3} 2 \times 10^{3}$ $10^{2} 2 \times 10^{2}$ 2 345 20 10

The Boron flux

The Carbon flux

Primary vs. secondary nuclei

Iron rate

The DAMPE detector

Thick imaging calorimeter (BGO of 32 X₀)
 Precise tracking with Si strip detectors (STK)
 Tungsten photon converters in tracker (STK)
 Charge measurements with PSD and STK
 Extra hadron rejection with NUD

Launched December 17, 2015

Raw energy distribution, with fiducial cut

~200k TeV (raw) events/year
~250 >50 TeV (raw) events/year

Mostly p and nuclei, for high energy CR physics

High energy electrons/photons

- ~52k events in fitted signal (2 σ) with E>100 GeV in 9 months
 - Signal stable with track match cut, s/b improved
 - Assume γ = 2.7, >450 events above 1 TeV in 1 year

More powerful methods exploiting the full detector capability, and with ML algorithms, are being developed

Expected (e⁺+e⁻) flux, DAMPE 3 years

In the past hundred years, balloons and satellites have measured charged Cosmic Rays with ~30% accuracy.

AMS is providing cosmic ray information with ~1% accuracy. This accuracy provides a new understanding of the nature of Cosmic Rays.

And there is a lot more to come...

See CERN seminar by S.C.C. Ting

tomorrow afternoon

GBM 160928825

GBM 160928825

