Elements of radio-emission and radio-detection of atmospheric showers

Benoît REVENU, SUBATECH, Nantes

Outlook

Introauction

- some numbers on atmospherical showers
- secondary particles and fluorescence light
- orders of magnitude with Coulomb
- polarisation with the radiative contribution
- Radio detection
- in Nançay (CODALEMA) and in Malargüe (Auger)
- the future

Shower composition

99% of gammas, electrons, positrons, 0.9 \% of muons

F. Schmidt, "CORSIKA Shower Images", http://www.ast.leeds.ac.uk/~fs/showerimages.html

Shower composition

Shower composition

- estimate of the
- estimate of the
- constraints on the nature of the primary

Shower composition

detection of the fluorescence light

$X_{\text {max }}$: depends on the nature and the energy of the primary
calorimetric measurement
effective time around 10%

Radio-emission: electric field

at EeV energies, huge number of secondary particles (few 10^{8})

$$
\vec{E}=\frac{e}{4 \pi \varepsilon_{0}}\left[\frac{\vec{n}-\vec{\beta}}{\gamma^{2} R^{2}(1-\vec{\beta} \cdot \vec{n})^{3}}+\frac{\vec{n} \times\left((\vec{n}-\vec{\beta}) \times \vec{\beta}^{\prime}\right)}{R c(1-\vec{\beta} \cdot \vec{n})^{3}}\right]_{\mathrm{ret}}
$$

Lorentz force
Coulombian scattering with other charges
the complete computation is impossible choice between 2 descriptions: microscopic and macroscopic

Radio-emission: Coulombian approach

But before this, to get the orders of magnitude, consider only the Coulombian contribution to the electric field

Radio-emission: Coulombian approach

 moving electric chargesystem R

Radio-emission: Coulombian approach

$$
E_{\perp}^{\prime}=\frac{\gamma q d^{\prime}}{4 \pi \varepsilon_{0}\left(\gamma^{2} \beta^{2} c^{2} t^{\prime 2}+d^{\prime 2}\right)^{3 / 2}}
$$

origin of times: when the impact parameter is the smallest from FD: the number of charges is proportionnal to the primary energy
true also for the field! (proportionnal to q)

$$
\|\vec{E}\| \propto E_{p}
$$

$$
\begin{gathered}
30 \mathrm{MeV} e^{-}(\gamma \sim 60), 2.10^{8} e^{-} \text {at } X \max \left(2 \times 10^{17} \mathrm{eV}\right. \\
\text { shower), } e^{-} \text {in excess at the level of } 20 \%
\end{gathered}
$$

Radio-emission: Coulombian approach

$$
E_{\text {max }}=\frac{\gamma q}{4 \pi \varepsilon_{0} d^{2}},
$$

$0.1 \mathrm{mV} / \mathrm{m}$ for $\mathrm{d}=100 \mathrm{~m}$

monopolar pulse, duration is 5 ns FWHM

Radio-emission: Coulombian approach

Frequency spectrum

important to detect the electric field at low frequencies to be able to see distant showers

Radio-emission: Coulombian approach

what we learnt with the Coulombian approach

- the electric field is properitionnall to the number of charges and consequently to the primary energy
- the signal is in the band
- we need a large bande einiienina to detect distant showers
- we need a sensitive antenna to be able to detect electric fields below mV / m
- choose a radio-quiet site to limit human pollution

Radio-emission: some details

we must take into account other phenomenons

- the air index varies with altitude and weather conditions (Cerenkov)
- the shower is not 1 D , we must consider the lateral and longitudinal distributions
- the shower front thickness is of the order of few meters corresponding to frequencies between 1 MHz and 200 MHz (scales as N^{2}, in the coherence domain)
- \vec{B} systematically separates the charges with the Lorentz force

Radio-emission: different descriptions

Macroscopic or microscopic...

- Cerenkov emission from the excess of electrons (10-20 \% excess), effet Askaryan
- current emission, $\vec{j} \quad A^{\mu} \propto \int j^{\mu} / R$
- coherent synchrotron emission of the e^{+} / e^{-} pairs
- radiative field of the accelerated charges in the magnetic field
- boosted Coulombian field
- shower polarisation (dipole)
$\left.\begin{array}{|c|c|c|}\hline \text { year } & \text { theory } & \text { experiments } \\ \hline 1962 & \text { Askaryan: Cerenkov from electrons } & \\ \hline 1965 & \begin{array}{c}\text { Kahn and Lerche: charge excess, } \\ \text { transverse current (dominant), dipole }\end{array} & \begin{array}{c}\text { Jelley, first radio pulses in coincidence with } \\ \text { Geiger counters }\end{array} \\ \hline 1970 & \text { Ehd Of the } & \left.\begin{array}{c}\text { Allan's parameterisation : } \\ E_{\nu}=20\left(\frac{E_{P}}{10^{17} \mathrm{eV}}\right)\end{array}\right) \sin \alpha \cos \theta \operatorname{cexp}\left(-\frac{R}{R_{0}(\nu, \theta)}\right)\end{array}\right)$

Radio-emission: different signatures

- Cerenkov from e^{-}: ; dominant effect in a dense material (water, ice....): GLUE, ANITA, RICE, SALSA
- transverse current: bipolar pulse, , peak due to the early stages of the shower, the field is due to the
- e^{+} / e^{-}synchrotron: , peak due to the maximum
- radiative field from accelerated particles:
polarisation along
- Coulombian field: due to the low energy part of the shower, no directional signature
summary: the field is due to the shower development and some models predict a $\vee \times B$ dependence

Radio-emission: geomagnetic signature

 the radiative contribution$$
\begin{gathered}
\vec{E}=\frac{e}{4 \pi \varepsilon_{0}}\left[\frac{\vec{n}-\vec{\beta}}{\gamma^{2} R^{2}(1-\vec{\beta} \cdot \vec{n})^{3}}+\frac{\vec{n} \times\left((\vec{n}-\vec{\beta}) \times \overrightarrow{\beta^{\prime}}\right)}{R c(1-\vec{\beta} \cdot \vec{n})^{3}}\right]_{\text {ret }} \\
\text { with } \\
t_{\text {obs }}=t+\frac{|R(t)|}{c} \quad \overrightarrow{\beta^{\prime}}=\omega \vec{\beta} \times \vec{b} \quad \omega=\frac{e B}{\gamma m} \\
\vec{b}=\frac{\vec{B}}{B} \text { Lorentz! synchrotron frequency }
\end{gathered}
$$

$$
\vec{E}_{\text {radiative }} \propto \vec{\beta} \times \vec{B}
$$

Radio-emission: geomagnetic signature

model self consistence:

$$
\begin{gathered}
\frac{(\vec{v} \times \vec{B})_{z}}{(\vec{v} \times \vec{B})_{\mathrm{NS}}}=\frac{E_{z}}{E_{\mathrm{NS}}}=\mp \tan \theta_{B} \\
\begin{array}{c}
\text { following } \mathrm{N} \text { or } \mathrm{s} \text { constant value! } \\
\text { hemisphere }
\end{array}
\end{gathered}
$$

but the vertical signal may be hard to detect because of human activities

Radio-emission: geomagnetic signature

$$
\vec{E}_{\text {radiative }} \propto \vec{\beta} \times \vec{B}
$$

Allan's formula (1970):
$\mu \mathrm{V} \cdot \mathrm{m}^{-1} \cdot \mathrm{MHz}^{-1}$

$$
\mathcal{E}_{\nu}=20\left(\frac{E_{P}}{10^{17} \mathrm{eV}}\right) \sin \alpha \cos \theta \exp \left(-\frac{R}{R_{0}(\nu, \theta)}\right)
$$

proportionnal to primary energy
$\frac{|\vec{\beta} \times \vec{B}|}{\beta B}$
atmospherical attenuation
exponential decrease with axis distance

Radio-technique: potentialities

\bigcirc
 : triangulation with GPS timing and lateral distribution (like a SD)

- energy: electric field proportional to primary energy and due to the longitudinal development (like a FD)
(thunderstorms periods)
- cheap deriecio! ! (around 4000 euros for a fully autonomous station, $1 / 3$ of a Auger tank)

test with hybrid experiments (CODALEMA, LOPES)

Radio-detection of atmospheric showers

the CODALEMA experimenti

Construct an appropriate antenna

CODALEMA

in the Nançay radiotelescope site (center of France)

- array of 17 scintillators, step of $80 \mathrm{~m}, 300 \mathrm{~m} \times 300 \mathrm{~m}$:

- DAM: 144 log-periodic antennas $80 \times 80 \mathrm{~m}^{2}$

CODALEMA

trigger: remote control of the thresholds and trigger conditions

MATACQ ADC : $300 \mathrm{MHz}, 12$ bits, 1 Gs/s, 2500 samples

CODALEMA

- condition for 1 scintillator: peak>0.3 VEM
- trigger: the 5 central stations wihtin 600 ns
- trigger rate: 7 min
- internal event: the scintillator with maximal signal is not on the edges (good reconstruction of core and energy)
- external event: axis direction only
- 50000 internal events in 2 years $\theta \leqslant 50^{\circ}$

CODALEMA

- condition for 1 scintillator: peak>0.3 VEM
- trigger: the 5 central stations wihtin 600 ns
- trigger rate: 7 min
- internal event: the scintillator with maximal signal is not on the edges (good reconstruction of core and energy)
- external event: axis direction only
- 50000 internal events in 2 years $\theta \leqslant 50^{\circ}$

CODALEMA

trigger scintillator

record radio data, $1 \mathrm{Gs} / \mathrm{s}$, $2.5 \mu \mathrm{~S}$

CODALEMA

numeric filter in the band

CODALEMA

numeric filter in the band

kill Gibbs regions

CODALEMA

numeric filter in the band

23-82 vilez

kill Gibbs regions

detect transients

CODALEMA

CODALEMA

identification of cosmic rays:

comparison of the radio/scintillator reconstructions

$\left(\theta, \phi, t_{0}\right)_{\text {radio }} \quad\left(\theta, \phi, t_{0}\right)_{\text {scintillator }}$

$\delta \Omega, \delta t$

27/11/06-20/03/08 355 effective days 619 coincidences (internal and external)

CODALEMA

identification of cosmic rays:

 comparison of the radio/scintillator reconstructions
$\left(\theta, \phi, t_{0}\right)_{\text {radio }}$
 $\left(\theta, \phi, t_{0}\right)_{\text {scintillator }}$

$\delta \Omega, \delta t$
$|\delta t| \leqslant 100 \mathrm{~ns}$

27/11/06-20/03/08 355 effective days 619 coincidences (internal and external)

CODALEMA

identification of cosmic rays:

comparison of the radio/scintillator reconstructions

$\left(\theta, \phi, t_{0}\right)_{\text {radio }}$

$\left(\theta, \phi, t_{0}\right)_{\text {scintillator }}$

$$
\delta \Omega, \quad \delta t
$$

$|\delta t| \leqslant 100 \mathrm{~ns}$
$\delta \Omega \leqslant 20^{\circ}$
27/11/06-20/03/08 355 effective days 619 coincidences (internal and external)

CODALEMA

arrival directions (internal and external events) distribution on the sky, in local coordinates: strong

CODALEMA

arrival directions (internal and external events) distribution on the sky, in local coordinates: strong

CODALEMA

arrival directions (internal and external events) distribution on the sky, in local coordinates: strong

CODALEMA

arrival directions (internal and external events) distribution on the sky, in local coordinates: strong

CODALEMA

the observed asymetry is stable in time (checked on 7 subsets with same number of events)

4.8 times more events from the North

CODALEMA

asymetry as a function of energy (internal events only)

CODALEMA

asymetry as a function of energy (internal events only)

CODALEMA

$$
\vec{E}_{\text {radiative }} \propto \vec{\beta} \times \vec{B}
$$

hypothesis: the probability to trigger is proportionnal to the norm of the electric field this permits to construct an according to this geomagnetic model

CODALEMA

ingredients:

$\vec{E}_{\text {radiative }} \propto \vec{\beta} \times \vec{B}$

CODALEMA ingredients:

use the zenithal trigger distribution

CODALEMA ingredients:

 use the azimutal distribution of the trigger

CODALEMA

$$
(\vec{\beta} \times \vec{B}) \cdot \frac{\mathrm{d} N}{\mathrm{~d} \theta} \cdot \frac{\mathrm{~d} N}{\mathrm{~d} \phi}
$$

CODALEMA

$$
(\vec{\beta} \times \vec{B})_{\mathrm{EW}} \cdot \frac{\mathrm{~d} N}{\mathrm{~d} \theta} \cdot \frac{\mathrm{~d} N}{\mathrm{~d} \phi} \cdot \frac{1}{\sin \theta}
$$

CODALEMA

At first sight it is very encouraging check further with MC simulations

CODALEMA

Test with Monte-Carlo simulation: draw N sets of p simulated events following the theoretical skymap, p being the actual number of real events in the CODALEMA dataset and compute the angular distributions

CODALEMA

good results also in the NS polarisation (but only 3 antennas and small amount of data)

NS polarisation observed skymap

CODALEMA

comparison with MC simulation in the NS polarisation

CODALEMA

electric field from primary energy

$$
\begin{aligned}
\mathcal{E}_{\nu} & =20\left(\frac{E_{P}}{10^{17} \mathrm{eV}}\right) \sin \alpha \cos \theta \exp \left(-\frac{R}{R_{0}(\nu, \theta)}\right) . \\
& \propto E_{0} \exp \left(-R / R_{0}\right) \quad \text { is like a }
\end{aligned}
$$

core position given by the scintillators

CODALEMA

correlation between the electric field and the primary energy

Radio detection in Argentina

Radio detection in Argentina

first prototype fully autonomous (acquisition, WIFI transfer, solar panels and batteries) same CODALEMA dipolar antenna

2 polarisation measurements offline detection of coincidences with Auger SD

Radio detection in Argentina

Radio detection in Argentina

Auger events seen by the radio setup

$$
(\vec{\beta} \times \vec{B})_{\mathrm{EW}} \cdot \frac{\mathrm{~d} N}{\mathrm{~d} \theta} \cdot \frac{\mathrm{~d} N}{\mathrm{~d} \phi} \cdot \frac{1}{\sin \theta}
$$

82\% from South, 57 events

The threefold coincidence

gps $=943609544$ monday 2009-Nov-30 09:45:29 UTC

ntanks=5
xcore=-8838.37
ycore=-3953.46
energy (EeV) $=2.19300$ (not CIC)
axdist-Al= 163.1177 m
axdist-A2= 80.6342 m
axdist-A3= 183.1924 m

CDAS reconstruction

CDAS reconstruction

Radio reconstruction

943609544

Trigger rates on the 30th Nov 2009

 nano A1 = 317954981nano A2 $=317954647$

Radio reconstruction

$$
\begin{aligned}
& \text { nano } A 1=317954981 \\
& \text { nano } A 2=317954647 \\
& \text { nano } A 3=317954976
\end{aligned}
$$

Auger angular resolution for this θ and multiplicity : above 1°

Radio reconstruction

Radio reconstruction

 given the Auger SD core position and the direction, compute the profile in the band [50-70] MHz:$$
\begin{aligned}
& E_{i}^{\mathrm{EW}}=E_{0}^{\mathrm{EW}} \exp \left(-d_{i} / d_{0}\right) \\
E_{0}^{\mathrm{EW}} & \sim 900 \mu \mathrm{~V} / \mathrm{m} \quad d_{0} \sim 265 \mathrm{~m} \\
& E_{0}^{\mathrm{EW}} /|(\vec{v} \times \vec{B}) \cdot \overrightarrow{\mathrm{EW}}| \sim 1220 \mu \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

From CODALEMA:

$$
E_{0}^{\mathrm{EW}} /|(\vec{v} \times \vec{B}) \cdot \overrightarrow{\mathrm{EW}}|=10^{b} E_{\mathrm{CIC}}{ }^{a}, b=-15.93, a=1.05
$$

so that

in very good agreement (10 \%) with Auger value:

$$
1.57-2.45-1.43 \text { EeV (old CIC, MC+muons, new CIC) }
$$

Radio detection in Argentina

Radio detection in Argentina, AERA

- radio signail cailborarion: dependence with shower parameters, in order to understand the emission mechanisms of the electric field
- check wether the radio technique the shower parameters
- compostition of the cosmic rays above the ankle with super-hybrid measurements (SD, FD, radio)
threshold around $10^{17.2} \mathrm{eV}$,
5000 expected events per year, 1000 above $10^{18} \mathrm{eV}$

Radio detection in Argentina, AERA

160 autonomous radio-stations over $20 \mathrm{~km}^{2}$ on the AMIGA and HEAT site frequency band $30-80 \mathrm{MHz}$

 stage 1: 20-25 stations, may 2010?

Thanks!

