Cosmologie Moderne Cours 13-14

J.-Ch. Hamilton, APC hamilton@apc.univ-paris7.fr

J.-Ch. Hamilton - Université Ouverte 2013

Plan du cours

• Vue d'ensemble de la cosmologie

- ★ Échelles
- ★ Les pilliers de la cosmologie
- ★ L'Univers de Friedman-Lemaître
- ★ Histoire thermique de l'Univers

La cosmologie observationnelle aujourd'hui

- ★ Distances en cosmologie
- \star La formation des structures
- ★ La matière noire
- ★ Energie sombre: Tests cosmologiques (SNIa, CMB et les autres...)

• Le futur de la cosmologie

- \star L'inflation
- ★ Univers primordial
- ★ Multivers ?

Matière noire

• Pourquoi ?

- ★ Dynamique des amas
- ★ Courbes de rotation des galaxies
- \star Formation des structures et fond diffus

Quels candidats ?

- ★ Objets compacts
- ★ Particules «exotiques»
- ★ Modification de la gravité

Le Bullet Cluster

Candidats pour la matière noire

Objets compacts

- Trous noirs, naines brunes
- Essentiellement exclus vers la fin des 90'

J.-Ch. Hamilton - Université Ouverte 2014

Microlensing

J.-Ch. Hamilton - Université Ouverte 2014

http://www.apc.univ-paris7.fr/~hamilton/JCHweb/Cosmologie_Moderne.html

40

30

20

10

Ω

Microlensing

J.-Ch. Hamilton - Université Ouverte 2014

Candidats pour la matière noire

Objets compacts

- Trous noirs, naines brunes
- Essentiellement exclus vers la fin des 90'

Physique des particules

- ★ Supersymetrie
 - modèles minimaux défavorisés par le LHC
 - détection directe (Edelweiss, CDMS, Xenon) ?
 - DAMA, COGENT, CRESST on annoncé une détection

★ Dimensions supplémentaires, Axions

Recherche directe de matière noire

• Détection simultanée de la charge et de la chaleur

Recherche directe de matière noire

J.-Ch. Hamilton - Université Ouverte 2014

Recherche directe de matière noire

J.-Ch. Hamilton - Université Ouverte 2014

Candidats pour la matière noire

• Objets compacts

- Trous noirs, naines brunes
- Essentiellement exclus vers la fin des 90'

• Physique des particules

- ★ Supersymetrie
 - modèles minimaux défavorisés par le LHC
 - détection directe (Edelweiss, CDMS, Xenon) ?
 - DAMA, COGENT, CRESST on annoncé une détection
- ★ Dimensions supplémentaires, Axions

Modification de la gravité

- D.M. uniquement observée via des effets gravitationnels
- ★ MOND/TeVeS ?

Impressionnant, mais MOND échoue sur tout le reste

Candidats pour la matière noire

Objets compacts

- Trous noirs, naines brunes
- Essentiellement exclus vers la fin des 90'

Physique des particules

- ★ Supersymetrie
 - modèles minimaux défavorisés par le LHC
 - détection directe (Edelweiss, CDMS, Xenon) ?
 - DAMA, COGENT, CRESST on annoncé une détection

Dimensions supplémentaires, Axions

Modification de la gravité

- D.M. uniquement observée via des effets gravitationnels
- ★ MOND/TeVeS ? attractives mais ..
 - Besoin de beaucoup de neutrinos pour expliquer les courbes de rotation et les amas
 - Franc désaccord avec le CMB et les BAO
 - aucune base théorique satisfaisante (pas de théorie «covariante»)
 - Est-ce vraiment plus «économique» que la matière noire ?

 $m \frac{a^2}{a_0}$

si $a < a_0$

si $a > a_0$

Conclusions sur la matière noire

J.-Ch. Hamilton - Université Ouverte 2014

Plan du cours

• Vue d'ensemble de la cosmologie

- ★ Échelles
- ★ Les pilliers de la cosmologie
- ★ L'Univers de Friedman-Lemaître
- ★ Histoire thermique de l'Univers

La cosmologie observationnelle aujourd'hui

- ★ Distances en cosmologie
- \star La formation des structures
- ★ La matière noire
- ★ Energie sombre: Tests cosmologiques (SNIa, CMB et les autres...)

• Le futur de la cosmologie

- \star L'inflation
- ★ Univers primordial
- \star Multivers ?

Principe des tests cosmologiques

- Exploiter le fait que la relation entre distance et redshift dépend des paramètres cosmologiques
 - ★ Distance : D(z) [luminosité ou angulaire]
 - ★ Épaisseur : H(z)
 - **\star** Facteur de croissance : Dg(z)
- Si on dispose de :
 - ★ Chandelle standard (luminosité intrinsèque connue)
 - ★ Étalon de distance standard
 - ★ Densité d'objets standard

On mesure ces observables à différents redshifts et on ajuste la cosmologie

- ★ SNIa : $D_1(z)$ à z<1
- ★ BAO : $D_a(z)$ transversalement et H(z) radialement à 0.3 < z < 1 et 2 < z < 2.5
- ★ Comptage d'amas : $D_P^2(z)/H(z)$ et g(z) à z~0.6 I
- ★ Weak lensing : Dp(z) et Dg(z) à $z \sim I$

Une large part de la difficulté est de trouver des standards

Évolution des systèmes sur les échelles de temps concernées (bras de levier en z) Variation intrinsèque des phénomènes astrophysiques (complexes, grand nombre de degrés de liberté non observables)

Distances et Énergie Sombre

H(z) et Énergie Sombre

Facteur de croissance

Tests pour l'énergie sombre

• SNIa

- Soustraction cosmique
- BAO
- Weak-Lensing

J.-Ch. Hamilton - Université Ouverte 2014

Les Supernovae de type la

- «Stella Nova» (Kepler) aussi brillante qu'une galaxie toute entière
 - ➡ Visible de très loin !
 - rare ~ qques / galaxie / siècle

Explosion stellaire

J.-Ch. Hamilton - Université Ouverte 2014

Modèle de Supernovae

- SNII et SNIb/c : Effondrement d'une étoile massive (jeune) «core-collapse»
 SNIa : Explosion thermonucléaire d'une naine blanche d'un système
 - binaire
 - La naine blanche a consommé tout son hydrogène et n'est «retenue» que par la pression quantique du gaz d'électrons : stable uniquement si M < M_{ch} (1.44 M₀)
 - La naine blanche phagocyte son compagnon : sa masse augmente
 - Au delà de M_{ch}, explosion thermonucléaire :
 - Au centre les noyaux (C, O) sont incinérés et forment du Fe et Ni
 - À la périphérie la matière est éjectée en brûlant et en

J.-Ch. Hamilton - Université Ouverte 2014

http://www.apc.univ-paris7.fr/~hamilton/JCHweb/Cosmologie_Moderne.html

SN 2006X, before and after the Type Ia Supernova Explosion (Artist Impression)

SO Press Photo 31b/07 (12 July 2007)

SNIa

Röpke (2006)

Physique de l'explosion mal comprise

- \star mode d'ignition ?
- ★ Détonation (supersonique) ?
- ★ Déflagration (subsonique) ?

L'explosion produit une large quantité de ⁵⁶Ni ★ Désintégration : ~ 15j ★ Suivi de Cobalt : ~ plusieurs mois

- La masse est toujours la même
 - ★ On attend une grande homogénéité

J.-Ch. Hamilton - Université Ouverte 2014

Supernovae de type la (SNIa) : Chandelles standard

Très lumineuses (plus que leur galaxie): visibles de loin
Luminosité au maximum standardisable

En fait l'idée trainait déjà...

Letters to Nature

Nature 348, 705-707 (27 December 1990) | doi:10.1038/348705a0; Accepted 31 October 1990

The cosmological constant and cold dark matter

G. Efstathiou, W. J. Sutherland & S. J. Maddox

1. Department of Physics, University of Oxford, Oxford 0X1 3RH, UK

THE cold dark matter (CDM) model¹⁻⁴ for the formation and • Top distribution of galaxies in a universe with exactly the critical density is theoretically appealing and has proved to be durable, but recent work⁵⁻⁸ suggests that there is more cosmological structure on very large scales ($l > 10 h^{-1}$ Mpc, where h is the Hubble constant H₀ in units of 100 km s⁻¹ Mpc⁻¹) than simple versions of the CDM theory predict. We argue here that the successes of the CDM theory can be retained and the new observations accommodated in a spatially flat cosmology in which as much as 80% of the critical density is provided by a positive cosmological constant, which is dynamically equivalent to endowing the vacuum with a non-zero energy density. In such a universe, expansion was dominated by CDM until a recent epoch, but is now governed by the cosmological constant. As well as explaining large-scale structure, a cosmological constant can account for the lack of fluctuations in the microwave background and the large number of certain kinds of object found at high redshift.

ARTICLE TOOLS

- Send to a friend
- Export citation
- Export references
- Rights and permissions
- Grder commercial reprints
- 💿 Bookmark in Connotea

SEARCH PUBMED FOR

- G. Efstathiou
- W. J. Sutherland
- S. J. Maddox

Tests pour l'énergie sombre

• SNIa

Soustraction cosmique

• BAO

Weak-Lensing

• Effet ISW

J.-Ch. Hamilton - Université Ouverte 2014

Soustraction Cosmique

Diverses observations montrent que W_m=0.3

ensing

simulations.

x-ray gas

Tiré de R. Kolb

J.-Ch. Hamilton - Université Ouverte 2014

Soustraction Cosmique

 Ω_{m}

1 - 0.3 = 0.7

 Ω_{tot}

http://www.apc.univ-paris7.fr/~hamilton/JCHweb/Cosmologie_Moderne.html

 Ω_{\wedge} ?

Tests pour l'énergie sombre

• SNIa

Soustraction cosmique

BAO

• Weak-Lensing

• Effet ISW

Oscillations acoustiques de baryons

Univers jeune: ionisé

- ★ Photons et baryons couplés
- \star Propagation d'ondes de pression

Découplage matière-rayonnement: Univers neutre

- ★ Les photons s'échappent (CMB)
- ★ Baryons: excès à l'horizon sonore (150 Mpc)
- ★ Matière noire restée au centre
- ★ Un excès demeure à 150 Mpc

Oscillations acoustiques de baryons

Univers jeune: ionisé

- ★ Photons et baryons couplés
- \star Propagation d'ondes de pression

Découplage matière-rayonnement: Univers neutre

- ★ Les photons s'échappent (CMB)
- ★ Baryons: excès à l'horizon sonore (150 Mpc)
- ★ Matière noire restée au centre
- ★ Un excès demeure à 150 Mpc

Observations des BAO

BAO: Règle standard

J.-Ch. Hamilton - Université Ouverte 2014

• Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

★ On mesure (θ , ϕ , z)

★ z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$

- Effet Kaiser (grandes échelles):
 - chute des galaxies dans les potentiels de DM
 - Augmente le rapport S/N du clustering
- Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

Espace des redshifts

• Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

★ On mesure (θ , ϕ , z)

★ z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$ <u>Effet Kaiser (grandes échelles)</u>:

- chute des galaxies dans les potentiels de DM
- Augmente le rapport S/N du clustering
- Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

Effet Kaiser

surdensité

/ observateur

Doigts de Dieu

surdensité

/ observateur

Redshift space distorsions

★ On me ne mesure pas les positions des galaxies

★ On mesure (θ , ϕ , z)

★ z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$ <u>Effet Kaiser (grandes échelles)</u>:

- chute des galaxies dans les potentiels de DM
- Augmente le rapport S/N du clustering
- Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

-100 -50 0 50 100 σ(Mpc/h)

Redshift space distorsions

\star On me ne mesure pas les positions des galaxies

★ On mesure (θ , ϕ , z)

★ z est affecté de distorsions: $z_{mes} = z_{vrai} + z_{pec}$ <u>Effet Kaiser (grandes échelles)</u>:

- chute des galaxies dans les potentiels de DM
- Augmente le rapport S/N du clustering
- Doigts de Dieu (amas virialisés: petites échelles):
 - Vitesses aléatoires des galaxies

Non linéarités:

effondrement gravitationnel non linéaire: lisse les structures aux petites échelles et à bas z

Tout cela complique l'analyse...

Non linéarités: [Padmanabhan et al., 2012]

Non linéarités + RSD

J.-Ch. Hamilton - Université Ouverte 2014

Résultats DRII (2013)

J.-Ch. Hamilton - Université Ouverte 2014

Diagramme de Hubble DRII

Contraintes cosmologiques DRII

Contraintes cosmologiques DRII

