Cosmologie Moderne Cours 10

J.-Ch. Hamilton, APC hamilton@apc.univ-paris7.fr

J.-Ch. Hamilton - Université Ouverte 2013

temps

dernière diffusion

380 000 ans

10 000 ans

égalité matière – rayonnement

nucléosynthèse primordiale – 3 mn disparition anti-hadrons – 10⁻⁴ sec confinement quarks

fin inflation – 10⁻³³ sec début ère J.-Ch. Hamilton - Université Ouverte 2014

Petite Histoire de l'Univers

Découplage Matière-rayonnement

Noyaux, électrons et photons

- \star Interactions continuelles
- Équilibre thermodynamique
- Libre parcours moyen des photons court
- ★ Univers opaque

La température baisse

- ★ T<I3.6 eV 3000K
- ★ Électrons et noyaux forment des atomes
- ★ Les photons n'intéragissent plus
- ★ Univers transparent

Émission du fond diffus

cosmologique

- ★ 3000 K à z=1000
- ★ 3 K aujourd'hui
- ★ Rayonnement sur tout le ciel
- ★ Photographie de l'Univers à z=1000
 - endroits plus denses = plus chauds
 - endroits moins denses = moins chauds

 $p + e^- \longleftrightarrow H + \gamma$

Découplage Matière-rayonnement

Noyaux, électrons et photons

 \star Interactions continuelles

- ★ Équilibre thermodynamique
- ★ Libre parcours moyen des photons court

★ Univers opaque

La température baisse

- ★ T<I3.6 eV 3000K
- ★ Électrons et noyaux forment des atomes
- ★ Les photons n'intéragissent plus
- \star Univers transparent

Émission du fond diffus

cosmologique

- ★ 3000 K à z=1000
- ★ 3 K aujourd'hui
- ★ Rayonnement sur tout le ciel
- ★ Photographie de l'Univers à z=1000
 - endroits plus denses = plus chauds
 - endroits moins denses = moins chauds

WMAP

[J. Carlstrom]

J.-Ch. Hamilton - Université Ouverte 2014

[J. Carlstrom]

J.-Ch. Hamilton - Université Ouverte 2014

Amplitude des fluctuations en fonction de leur taille angulaire : Spectre de Puissance

Pic Acoustique des Baryons

à partir de l'égalité

matière-rayonnement

- surdensité = onde de pression qui se propage (onde acoustique)
- Vitesse : vitesse du son dans le fluide

Découplage matière-

rayonnement

- L'onde s'arrête : les photons s'échappent
- Coquille de matière à 150 Mpc de la surdensité de matière noire
 Les deux surdensités s'équilibrent
 Il reste un pic à 150 Mpc : pic des oscillations acoustiques de baryons (BAO)
- ★ CMB, Distribution des galaxies

Petite Histoire de l'Univers

dernière diffusion

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

fin inflation – 10⁻³³ sec début ère J.-Ch. Hamilton - Universite Ouverte 2014

Ages sombres : Formation des structures

La matière s'effondre sur les surdensités de matière noire

- Toujours pas d'étoiles
- seuls photons:
 - raie d'émission de l'hydrogène neutre (21 cm)
 - CMB

Lutte entre:

- ★ effondrement gravitationnel
- ★ expansion de l'Univers

Au delà d'un certain contraste de densité

★ La structure s'effondre et ne voit plus l'expansion

Des structures de plus en plus grosses se forment par collisions

R = 6.0 Mpc

z = 10.155

a = 0.090

diemand 2003

Le taux de croissance des structures va dépendre des paramètres cosmologiques

J.-Ch. Hamilton - Université Ouverte 2014

Simulation N corps en coordonnés comobiles

z = 20.0

J.-Ch. Hamilton - Université Ouverte 2014

Formation des amas (merging)

J.-Ch. Hamilton - Université Ouverte 2014