Évolution de l'Univers le modèle standard de la cosmologie

Jean-Christophe Hamilton APC hamilton@apc.univ-paris7.fr

Plan du cours

Cours II

- ★ L'Univers de Friedman-Lemaître-Robertson-Walker (FLRW)
 - Métrique FLRW
 - Redshift, taux d'expansion
 - Équations de Friedman
 - Densités des espèces composant l'Univers
 - Expansion lors de diverses ères
 - Quelques mots sur le «Big Bang» …
- F.A.Q. de cosmologie
- ★ Histoire «thermique» de l'Univers
 - Transitions de phase
 - Nucléosynthèse primordiale
 - Égalité matière-rayonnement
 - Découplage matière-rayonnement
 - Pic acoustique des baryons
 - Formation des structures
 - Ré-ionisation
 - premières étoiles, galaxies, supernovae ...

Métrique de FLRW

Relativité Générale $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu} + \Lambda g_{\mu\nu}$ + **Expansion**

- + Principe Cosmologique
- = Métrique de Friedman-Lemaître-Robertson-Walker

$$ds^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right] \qquad k = \begin{cases} 0 & \to \text{ Plat} \\ 1 & \to \text{ Fermé} \\ -1 & \to \text{ Ouvert} \end{cases}$$

a(t) : paramètre d'échelle

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\rho}{3} - \frac{k}{a^2} + \frac{\Lambda}{3}$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + 3p\right) + \frac{\Lambda}{3}$$

 $\left(\frac{\dot{a}}{a}\right)^2$ $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\rho}{3} - \frac{k}{a^2} + \frac{\Lambda}{3}$ $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + 3p\right) + \frac{\Lambda}{3}$ \mathcal{U}

 $\left(\frac{\dot{a}}{a}\right)$ $rac{8\pi G
ho}{3}-rac{k}{a^2}+rac{\Lambda}{3}$ Énergie sombre $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + 3p\right) + \frac{\Lambda}{3}$ \mathcal{U}

On écrit les équations d'Einstein pour la métrique FLRW
 Équations de Friedman:

Taux d'expansion (paramètre de Hubble):

 $\frac{\dot{a}}{a} = H(z)$ avec le redshift $1 + z = \frac{a_0}{a}$

Géométrie et contenu de l'Univers

• Densité critique:
$$\rho_c = \frac{3H^2}{8\pi G}$$

 $H^2 = \left(\frac{\dot{a}}{a}\right)^2 = H^2 \left(\frac{\rho}{\rho_c} + \frac{k}{a^2 H^2} + \frac{\Lambda}{3H^2}\right)$
 $= H^2 \left(\Omega_m + \Omega_k + \Omega_\Lambda\right)$

Densités des espèces dans l'Univers

$$\Omega_m = \frac{\rho}{\rho_c}, \quad \Omega_k = \frac{k}{a^2 H^2}, \quad \Omega_\Lambda = \frac{\Lambda}{3H^2}$$

On a toujours: $\Omega_k = \Omega_m + \Omega_\Lambda - 1$ En particulier, pour un Univers plat: $\Omega_m + \Omega_\Lambda = 1$

J.-Ch. Hamilton - Université Paris-Diderot - DEPAES 2011

Facteur d'échelle en FLRW

J.-Ch. Hamilton - Université Paris-Diderot - DEPAES 2011

Facteur d'échelle en FLRW

Solution simples des équations de Friedman

Univers primordial : domination du rayonnement

★ équation d'état de la matière relativiste : p = ★ Conservation du tenseur énergie-impulsion :

$$\bar{3}^{\rho}\dot{\rho} + 3\frac{\dot{a}}{a}(\rho+p) = 0$$

$$\Rightarrow \dot{\rho} + 4\rho \frac{\dot{a}}{a} = 0$$

$$\Rightarrow \frac{\dot{\rho}}{\rho} = -4\frac{\dot{a}}{a}$$

$$\Rightarrow \log \rho = \log(a^{-4}) + Cte$$

$$\Rightarrow \rho \propto a^{-4}$$

Première équation de Friedman : $\Leftrightarrow \quad \left(\frac{\dot{a}}{a}\right)^2 \propto a^{-4}$ $\Leftrightarrow \quad \dot{a} \propto a^{-1}$ $\Leftrightarrow \quad a \propto t^{1/2}$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\rho}{3} - \frac{k}{a^2} + \frac{\Lambda}{3}$$

Domination de la matière:

- La pression est alors négligeable devant la densité
- **★** Conservation du tenseur énergie impulsion: $\dot{\rho} + 3\rho^{\alpha} = 0$

 $\Leftrightarrow \ \rho \propto a^{-3} \qquad \Longrightarrow \Omega_{\rm NR} = \Omega_{\rm NR}^0 (1+z)^3$

★ Première équation de Friedman $\implies a \propto t^{2/3}$

• Domination par la constante cosmologique Λ :

- Densité constante. \star
- La conservation du tenseur énergie impulsion: $\dot{\rho} + 3\frac{a}{c}(\rho + p) = 0$ \star
- ★ donc l'équation d'état est : $p = -\rho$ ★ Première équation de Friedman $\Longrightarrow \left(\frac{\dot{a}}{a}\right)^2 = \frac{\Lambda}{3}$

 $\Rightarrow a \propto \exp\left(\sqrt{\frac{\Lambda}{3}}t\right)$ (expansion accélérée)

★ Cela semble être notre situation actuelle !

Quid du Big Bang?

Pas grand chose ...

- ★ La relativité Générale n'est pas une théorie quantique de l'espace-temps (elle est dite «classique»)
- La mécanique quantique donne une échelle en dessous de laquelle les effets qantiques devraient se faire sentir :

Temps de Planck
$$t_{\rm Pl} = \sqrt{\frac{hG}{c^5}} = 5.4 \times 10^{-44} {
m s}$$

- On n'a pas de théorie valide pour décrire ce qui s'est passé avant ...
 - ★ Espoirs :
 - Théorie des cordes
 - Gravité quantique à boucles

La gravité quantique ...

Extrait de la série TV «The Big Bang Theory»

J.-Ch. Hamilton - Université Paris-Diderot - DEPAES 2011

La gravité quantique ...

Extrait de la série TV «The Big Bang Theory»

J.-Ch. Hamilton - Université Paris-Diderot - DEPAES 2011

Plan du cours

Cours II

- * L'Univers de Friedman-Lemaître-Robertson-Walker (FLRW)
 - Métrique FLRW
 - Redshift, taux d'expansion
 - Équations de Friedman
 - Densités des espèces composant l'Univers
 - Expansion lors de diverses ères
 - Quelques mots sur le «Big Bang» …
- ★ F.A.Q. de cosmologie
- ★ Histoire «thermique» de l'Univers
 - Transitions de phase
 - Nucléosynthèse primordiale
 - Égalité matière-rayonnement
 - Découplage matière-rayonnement
 - Pic acoustique des baryons
 - Formation des structures
 - Ré-ionisation
 - premières étoiles, galaxies, supernovae ...

Qu'y avait-il avant le Big-Bang ?

Qu'y avait-il avant le Big-Bang ?

 \mathbf{x}

Mauvaise question : il n'y a pas d'avant l'apparition du temps. C'est comme se demander ce qui est au Nord du pole Nord. Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ...

Qu'y avait-il avant le Big-Bang ?

Mauvaise question : il n'y a pas d'avant l'apparition du temps. C'est comme se demander ce qui est au Nord du pole Nord. Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ... "Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

Qu'y avait-il avant le Big-Bang ?

Mauvaise question : il n'y a pas d'avant l'apparition du temps. C'est comme se demander ce qui est au Nord du pole Nord. Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ... "Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

• Si l'Univers est plat ou ouvert, il est infini spatialement. L'a-t-il toujours été ?

Qu'y avait-il avant le Big-Bang ?

Mauvaise question : il n'y a pas d'avant l'apparition du temps. C'est comme se demander ce qui est au Nord du pole Nord. Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ... "Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

Si l'Univers est plat ou ouvert, il est infini spatialement. L'a-t-il toujours été ?

- r Oui.
- ★ Les mesures actuellent favorisent un Univers plat, donc infini.
- Sauf s'il est multiplement connexe. Les contraintes à ce jour sont telles que la taille de la cellule (si elle existe) est grande par rapport à l'Univers observable.
- L'image du Big Bang comme une explosion à partir d'un point est fausse.

Qu'y avait-il avant le Big-Bang ?

- Mauvaise question : il n'y a pas d'avant l'apparition du temps. C'est comme se demander ce qui est au Nord du pole Nord. Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ...
- Si l'Univers est plat ou ouvert, il est infini spatialement. L'a-t-il toujours été ?
 - **d** Oui.
 - ★ Les mesures actuellent favorisent un Univers plat, donc infini.
- Sauf s'il est multiplement connexe. Les contraintes à ce jour sont telles que la taille de la cellule (si elle existe) est grande par rapport à l'Univers observable.
- L'image du Big Bang comme une explosion à partir d'un point est fausse.

"Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

Qu'y avait-il avant le Big-Bang ?

- Mauvaise question : il n'y a pas d'avant l'apparition du temps. C'est comme se demander ce qui est au Nord du pole Nord. Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ...
- Si l'Univers est plat ou ouvert, il est infini spatialement. L'a-t-il toujours été ?
 - **d** Oui.
 - ★ Les mesures actuellent favorisent un Univers plat, donc infini.
 - Sauf s'il est multiplement connexe. Les contraintes à ce jour sont telles que la taille de la cellule (si elle existe) est grande par rapport à l'Univers observable.
 - L'image du Big Bang comme une explosion à partir d'un point est fausse.

"Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

Qu'y avait-il avant le Big-Bang ?

Mauvaise question : il n'y a pas d'avant l'apparition du temps.
 C'est comme se demander ce qui est au Nord du pole Nord.
 Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ...

"Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

Si l'Univers est plat ou ouvert, il est infini spatialement. L'a-t-il toujours été ?

- r Oui.
- ★ Les mesures actuellent favorisent un Univers plat, donc infini.
- Sauf s'il est multiplement connexe. Les contraintes à ce jour sont telles que la taille de la cellule (si elle existe) est grande par rapport à l'Univers observable.
- L'image du Big Bang comme une explosion à partir d'un point est fausse.

Qu'y avait-il avant le Big-Bang ?

Mauvaise question : il n'y a pas d'avant l'apparition du temps.
 C'est comme se demander ce qui est au Nord du pole Nord.
 Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ...

"Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

Si l'Univers est plat ou ouvert, il est infini spatialement. L'a-t-il toujours été ?

de Oui.

- ★ Les mesures actuellent favorisent un Univers plat, donc infini.
- Sauf s'il est multiplement connexe. Les contraintes à ce jour sont telles que la taille de la cellule (si elle existe) est grande par rapport à l'Univers observable.
- L'image du Big Bang comme une explosion à partir d'un point est fausse.

L'expansion se fait-elle dans quelque chose ?

Qu'y avait-il avant le Big-Bang ?

Mauvaise question : il n'y a pas d'avant l'apparition du temps.
 C'est comme se demander ce qui est au Nord du pole Nord.
 Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ...

Si l'Univers est plat ou ouvert, il est infini spatialement. L'a-t-il toujours été ?

d Oui.

- ★ Les mesures actuellent favorisent un Univers plat, donc infini.
- Sauf s'il est multiplement connexe. Les contraintes à ce jour sont telles que la taille de la cellule (si elle existe) est grande par rapport à l'Univers observable.
- L'image du Big Bang comme une explosion à partir d'un point est fausse.

L'expansion se fait-elle dans quelque chose ?

- Non. L'Univers est tout par définition. Il n'y a pas expansion «dans» quelque chose.
- ★ Dans l'image du ballon qui se gonfle, on vit «à la surface du ballon» donc sur 2 dimensions. La troisième dimension n'a pas lieu d'être.
- ★ Notre esprit plonge une sphère dans 3 dimensions et voit une boule, mais la surface de la sphère est à 2 dimensions.

"Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

Qu'y avait-il avant le Big-Bang ?

Mauvaise question : il n'y a pas d'avant l'apparition du temps. C'est comme se demander ce qui est au Nord du pole Nord. Comment sont apparus l'espace et le temps ? Cf. Saint Augustin ...

Si l'Univers est plat ou ouvert, il est infini spatialement. L'a-t-il toujours été ?

- r Oui.
- ★ Les mesures actuellent favorisent un Univers plat, donc infini.
- Sauf s'il est multiplement connexe. Les contraintes à ce jour sont telles que la taille de la cellule (si elle existe) est grande par rapport à l'Univers observable.
- L'image du Big Bang comme une explosion à partir d'un point est fausse.

L'expansion se fait-elle dans quelque chose ?

- Non. L'Univers est tout par définition. Il n'y a pas expansion «dans» quelque chose.
- ★ Dans l'image du ballon qui se gonfle, on vit «à la surface du ballon» donc sur 2 dimensions. La troisième dimension n'a pas lieu d'être.
- ★ Notre esprit plonge une sphère dans 3 dimensions et voit une boule, mais la surface de la sphère est à 2 dimensions.

"Je réponds à cette demande : Que faisait Dieu avant de créer le ciel et la terre ? Je réponds, non comme celui qui éluda, dit-on, les assauts d'une telle question par cette plaisanterie : Dieu préparait des supplices aux sondeurs de mystères. Rire n'est pas répondre. Et je ne réponds pas ainsi. Et j'aimerais mieux confesser mon ignorance, que d'appeler la raillerie sur une demande profonde, et l'éloge sur une réponse ridicule.

Les confessions - Saint Augustin

Plan du cours

Cours II

- * L'Univers de Friedman-Lemaître-Robertson-Walker (FLRW)
 - Métrique FLRW
 - Redshift, taux d'expansion
 - Équations de Friedman
 - Densités des espèces composant l'Univers
 - Expansion lors de diverses ères
 - Quelques mots sur le «Big Bang» ...
- ★ F.A.Q. de cosmologie
- ★ Histoire «thermique» de l'Univers
 - Transitions de phase
 - Nucléosynthèse primordiale
 - Égalité matière-rayonnement
 - Découplage matière-rayonnement
 - Pic acoustique des baryons
 - Formation des structures
 - Ré-ionisation
 - premières étoiles, galaxies, supernovae ...
- Matière noire

Histoire thermique de l'Univers

Le modèle du Big Bang décrit l'Univers comme un milieu dense et chaud au départ
L'expansion implique un refroidissement
À certaines températures, des événements spécifiques surviennent (transitions de phases)

temps

Petite Histoire de l'Univers

Fig: M. Lemoine

J.-Ch. Hamilton - Université Paris-Diderot - DEPAES 2011

J.-Ch. Hanilton - Université Paris-Diderot - DEPAES 2011

Petite Histoire de l'Univers

temps

fin inflation – 10⁻³³ sec début ère rayonnement

temps

Petite Histoire de l'Univers

J.-Ch. Han

Université Paris-Diderot - DEPAES 2011

Fig: M. Lemoine

10⁻⁶ sec

10⁻³³ sec

temps

fin inflation début ère rayonnement

Petite Histoire de l'Univers

disparition anti-hadrons confinement quarks

temps

fin inflation début ère rayonnement

10⁻⁴ sec 10⁻⁶ sec

10⁻³³ sec

Petite Histoire de l'Univers

Séparation entre intéractions

- ★ Brisure de symétrie
- Des défauts topologiques peuvent / doivent apparaître

Défauts topologiques

- ★ Exemple simple : Murs de domaine
- ★ Avec des potentiels plus complexes:
 - Cordes cosmiques
 - Monopoles
 - Textures

Séparation entre intéractions

- ★ Brisure de symétrie
- Des défauts topologiques peuvent / doivent apparaître

Défauts topologiques

- ★ Exemple simple : Murs de domaine
- ★ Avec des potentiels plus complexes:
 - Cordes cosmiques
 - Monopoles
 - Textures

Séparation entre intéractions

- ★ Brisure de symétrie
- Des défauts topologiques peuvent / doivent apparaître

Défauts topologiques

- ★ Exemple simple : Murs de domaine
- ★ Avec des potentiels plus complexes:
 - Cordes cosmiques
 - Monopoles
 - Textures

Séparation entre intéractions

- ★ Brisure de symétrie
- Des défauts topologiques peuvent / doivent apparaître

Défauts topologiques

- ★ Exemple simple : Murs de domaine
- ★ Avec des potentiels plus complexes:
 - Cordes cosmiques
 - Monopoles
 - Textures

Séparation entre intéractions

- ★ Brisure de symétrie
- Des défauts topologiques peuvent / doivent apparaître

Défauts topologiques

- ★ Exemple simple : Murs de domaine
- ★ Avec des potentiels plus complexes:
 - Cordes cosmiques
 - Monopoles
 - Textures

disparition anti-hadrons confinement quarks

temps

fin inflation début ère rayonnement

10⁻⁴ sec 10⁻⁶ sec

10⁻³³ sec

Petite Histoire de l'Univers

Petite Histoire de l'Univers

Þ n!p (e⁺ (e)(e⁺ baryons (e)(e⁺ (D) \mathcal{V} (q) (\mathbf{q}) quarks/leptons (e)(Q) e \mathcal{V} inflation Fig: M. Lemoine J.-Ch. Han Université Paris-Diderot - DEPAES 2011

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

fin inflation début ère rayonnement

Début : ~ 3 min.

- ★ L'énergie des protons et neutrons devient assez faible pour former du deuterium (²H) par fusion nucléaire
- ★ A partir du deuterieum les éléments plus lourds se forment
- ★ 3 H, 3 He, 4 He, 6 Li, 7 Li, 7 Be, 8 Be

Fin ~ 20 min.

- L'univers est trop froid pour que la fusion nucléaire continue
- Il n'y a plus de neutrons libres (T~900 sec)
- Les abondances primordiales sont quasiment fixées
 - Sauf que les espèces radioactives se désintègrent (³H, ⁷Be, ⁸Be)
- Remarquable accord avec les observations

The Origin of Elements and the Separation of Galaxies

G. GAMOW George Washington University, Washington, D. C. June 21, 1948

Début : ~ 3 min.

- L'énergie des protons et neutrons devient assez faible pour former du deuterium (²H) par fusion nucléaire
- ★ A partir du deuterieum les éléments plus lourds se forment
- ★ 3 H, 3 He, 4 He, 6 Li, 7 Li, 7 Be, 8 Be

Fin ~ 20 min.

- L'univers est trop froid pour que la fusion nucléaire continue
- ★ II n'y a plus de neutrons libres (T~900 sec)
- ★ Les abondances primordiales sont quasiment fixées
 - Sauf que les espèces radioactives se désintègrent (³H, ⁷Be, ⁸Be)
- Remarquable accord avec les observations

The Origin of Elements and the Separation of Galaxies

G. GAMOW George Washington University, Washington, D. C. June 21, 1948

Début : ~ 3 min.

- L'énergie des protons et neutrons devient assez faible pour former du deuterium (²H) par fusion nucléaire
- ★ A partir du deuterieum les éléments plus lourds se forment
- ★ ³H, ³He, ⁴He, ⁶Li, ⁷Li, ⁷Be, ⁸Be

Fin ~ 20 min.

- L'univers est trop froid pour que la fusion nucléaire continue
- Il n'y a plus de neutrons libres (T~900 sec)
- ★ Les abondances primordiales sont quasiment fixées
 - Sauf que les espèces radioactives se désintègrent (³H, ⁷Be, ⁸Be)
- Remarquable accord avec les observations

The Origin of Elements and the Separation of Galaxies

G. GAMOW George Washington University, Washington, D. C. June 21, 1948

Début : ~ 3 min.

- ★ L'énergie des protons et neutrons devient assez faible pour former du deuterium (²H) par fusion nucléaire
- ★ A partir du deuterieum les éléments plus lourds se forment
- ★ ³H, ³He, ⁴He, ⁶Li, ⁷Li, ⁷Be, ⁸Be

• Fin ~ 20 min.

- L'univers est trop froid pour que la fusion nucléaire continue
- ★ Il n'y a plus de neutrons libres (T~900 sec)
- ★ Les abondances primordiales sont quasiment fixées
 - Sauf que les espèces radioactives se désintègrent (³H, ⁷Be, ⁸Be)
- Remarquable accord avec les observations

Début : ~ 3 min.

- L'énergie des protons et neutrons devient assez faible pour former du deuterium (²H) par fusion nucléaire
- ★ A partir du deuterieum les éléments plus lourds se forment
- ★ ³H, ³He, ⁴He, ⁶Li, ⁷Li, ⁷Be, ⁸Be

• Fin ~ 20 min.

- L'univers est trop froid pour que la fusion nucléaire continue
- ★ Il n'y a plus de neutrons libres (T~900 sec)
- ★ Les abondances primordiales sont quasiment fixées
 - Sauf que les espèces radioactives se désintègrent (³H, ⁷Be, ⁸Be)
- Remarquable accord avec les observations

Début : ~ 3 min.

- L'énergie des protons et neutrons devient assez faible pour former du deuterium (²H) par fusion nucléaire
- ★ A partir du deuterieum les éléments plus lourds se forment
- ★ ³H, ³He, ⁴He, ⁶Li, ⁷Li, ⁷Be, ⁸Be

• Fin ~ 20 min.

- L'univers est trop froid pour que la fusion nucléaire continue
- ★ Il n'y a plus de neutrons libres (T~900 sec)
- ★ Les abondances primordiales sont quasiment fixées
 - Sauf que les espèces radioactives se désintègrent (³H, ⁷Be, ⁸Be)
- Remarquable accord avec les observations

J.-Ch. Han

Université Paris-Diderot - DEPAES 2011

Fig: M. Lemoine

disparition anti-hadrons confinement quarks

fin inflation début ère rayonnement 10⁻⁴ sec 10⁻⁶ sec

• 10⁻³³ sec

temps

Petite Histoire de l'Univers

Petite Histoire de l'Univers

V e e noyaux (e⁻) (e)(e⁻ n!p ve (e) (e^{+}) baryons (e⁻ (e^{\dagger}) (\mathbf{Q}) \mathcal{V} (\mathbf{q}) quarks/leptons (e)(g) e \mathcal{V} inflation Fig: M. Lemoine J.-Ch. Han Université Paris-Diderot - DEPAES 2011

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

fin inflation début ère rayonnement

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

10 000 ans

3 mn 10⁻⁴ sec 10⁻⁶ sec

- 10⁻³³ sec

Petite Histoire de l'Univers

Égalité Matière-Rayonnement

- Le rayonnement se dilue comme: $ho_R \propto a^{-4}$
- La matière non relativiste se dilue comme: $ho_{NR} \propto a^{-3}$
- L'univers jeune était dominé par le rayonnement
 - La matière finit forcément par dominer
 ★ 1+z_{eq} = 2.4 × 10⁴Ω₀h₀² ~ 3175
 ★ avant l'égalité la matière ne peut pas s'effondrer à cause de la pression de radiation

à partir de l'égalité matière-rayonnement, les structures peuvent s'effondrer sous leur propre gravité !

Petite Histoire de l'Univers

V e e noyaux e (e)(e⁻ n!p ve (e) (e^{+}) baryons (e⁻ (e^{\dagger}) (\mathbf{Q}) \mathcal{V} (\mathbf{q}) quarks/leptons (e)(g) e \mathcal{V} inflation Fig: M. Lemoine J.-Ch. Han Université Paris-Diderot - DEPAES 2011

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

fin inflation début ère rayonnement

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

10 000 ans

3 mn 10⁻⁴ sec 10⁻⁶ sec

- 10⁻³³ sec

Petite Histoire de l'Univers

dernière diffusion

380 000 ans

10 000 ans

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

Petite Histoire de l'Univers

Découplage Matière-rayonnement

Noyaux, électrons et photons

- \star Interactions continuelles
- ★ Équilibre thermodynamique
- ★ Libre parcours moyen des photons court
- ★ Univers opaque

La température baisse

- ★ T<I3.6 eV 3000K
- ★ Électrons et noyaux forment des atomes
- ★ Les photons n'intéragissent plus
- \star Univers transparent

• Émission du fond diffus

cosmologique

- ★ 3000 K à z=1000
- ★ 3 K aujourd'hui
- ★ Rayonnement sur tout le ciel
- ★ Photographie de l'Univers à z=1000
 - endroits plus denses = plus chauds
 endroits moins denses = moins chauds

Découplage Matière-rayonnement

Noyaux, électrons et photons

- \star Interactions continuelles
- ★ Équilibre thermodynamique
- ★ Libre parcours moyen des photons court
- ★ Univers opaque

La température baisse

- ★ T<I3.6 eV 3000K
- ★ Électrons et noyaux forment des atomes
- ★ Les photons n'intéragissent plus
- ★ Univers transparent

• Émission du fond diffus

cosmologique

- ★ 3000 K à z=1000
- ★ 3 K aujourd'hui
- ★ Rayonnement sur tout le ciel
- ★ Photographie de l'Univers à z=1000
 - endroits plus denses = plus chauds
 endroits moins denses = moins chauds

On ne voit que la **surface** des nuages: là où la lumière a diffusé pour la dernière fois

Découplage Matière-rayonnement

Noyaux, électrons et photons

- \star Interactions continuelles
- Équilibre thermodynamique
- ★ Libre parcours moyen des photons court
- ★ Univers opaque

La température baisse

- ★ T<I3.6 eV 3000K
- \star Électrons et noyaux forment des atomes
- ★ Les photons n'intéragissent plus
- ★ Univers transparent

• Émission du fond diffus

cosmologique

- ★ 3000 K à z=1000
- ★ 3 K aujourd'hui
- ★ Rayonnement sur tout le ciel
- ★ Photographie de l'Univers à z=1000
 - endroits plus denses = plus chauds
 endroits moins denses = moins chauds

+/- 30 μK

WMAP

Pic Acoustique des Baryons

à partir de l'égalité

matière-rayonnement

- surdensité = onde de pression qui se propage (onde acoustique)
- ★ Vitesse : vitesse du son dans le fluide

Découplage matière-

rayonnement

- L'onde s'arrête : les photons s'échappent
- ★ Coquille de matière à 150 Mpc de la surdensité de matière noire
 ★ Les deux surdensités s'équilibrent
- Il reste un pic à 150 Mpc : pic des oscillations acoustiques de baryons (BAO)
- ★ CMB, Distribution des galaxies

Pic Acoustique des Baryons

à partir de l'égalité

matière-rayonnement

- surdensité = onde de pression qui se propage (onde acoustique)
- Vitesse : vitesse du son dans le fluide

Découplage matière-

rayonnement

- L'onde s'arrête : les photons s'échappent
- Coquille de matière à 150 Mpc de la surdensité de matière noire
 Les deux surdensités s'équilibrent
 Il reste un pic à 150 Mpc : pic des
- oscillations acoustiques de baryons (BAO)
- ★ CMB, Distribution des galaxies

Pic Acoustique des Baryons

à partir de l'égalité

matière-rayonnement surdensité = onde de pression qui

- se propage (onde acoustique)
- ★ Vitesse : vitesse du son dans le fluide

Découplage matière-

rayonnement

- L'onde s'arrête : les photons s'échappent
- Coquille de matière à 150 Mpc de la surdensité de matière noire
 Les deux surdensités s'équilibrent
 Il roste un pic à 150 Mpc : pic des
- Il reste un pic à 150 Mpc : pic des oscillations acoustiques de baryons (BAO)
- ★ CMB, Distribution des galaxies

Petite Histoire de l'Univers

dernière diffusion

380 000 ans

10 000 ans

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

Ages sombres : Formation des structures

La matière s'effondre sur les surdensités de matière noire

- ★ Toujours pas d'étoiles
- ★ seuls photons:

raie d'émission de l'hydrogène neutre (21 cm)

- CMB

Lutte entre:

- ★ effondrement gravitationnel
- ★ expansion de l'Univers

Au delà d'un certain contraste de densité

La structure s'effondre et ne voit plus l'expansion

 Des structures de plus en plus grosses se forment par collisions Le taux de croissance des structures va dépendre des paramètres cosmologiques

Ages sombres : Formation des structures

La matière s'effondre sur les surdensités de matière noire

- ★ Toujours pas d'étoiles
- seuls photons:
 - raie d'émission de l'hydrogène neutre (21 cm)
 - CMB

Lutte entre:

- ★ effondrement gravitationnel
- ★ expansion de l'Univers

Au delà d'un certain contraste de densité

La structure s'effondre et ne voit plus l'expansion

 Des structures de plus en plus grosses se forment par collisions R = 6.0 Mpc

z = 10.155

a = 0.090

diemand 2003

Le taux de croissance des structures va dépendre des paramètres cosmologiques

Simulation N corps en coordonnés comobiles

z = 20.0

50 Mpc/h

Formation des amas (merging)

Petite Histoire de l'Univers

dernière diffusion

380 000 ans

10 000 ans

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

re-ionisation

dernière diffusion $10^8 - 10^9$ ans

380 000 ans

10 000 ans

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

Petite Histoire de l'Univers

Ré-ionisation

Effet Gunn-Peterson

Spectre de quasar de découverte de l'effet (Becker et al. 2001)

Intérêt des Quasars :

À part quelques raies en émission, le spectre (UV) est essentiellement continu. Tous les accidents sont donc des raies en absorption de Lyman- α le long du trajet de la lumière.

Raie Lyman-a 1215x(1+z)=8820

Ré-ionisation

Effet Gunn-Peterson

Spectre de découverte de l'effet (Becker et al. 2001)

Raie Lyman-a 1215x(1+z)=8820

J.-Ch. Hamilton - Université Paris-Diderot - DEPAES 2011

Effet Gunn-Peterson

Absorption partielle dans un quasar plus proche

Raie Lyman-a 1215x(1+z)=8260

Ré-ionisation

Forêt Lyman- α

Simulation de percolation de la réionisation

re-ionisation

dernière diffusion $10^8 - 10^9$ ans

380 000 ans

10 000 ans

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

re-ionisation

dernière diffusion $10^8 - 10^9$ ans

380 000 ans

10 000 ans

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

1-3 x 10⁹ ans

 $10^8 - 10^9$ ans

380 000 ans

10 000 ans

3 mn

10⁻⁴ sec

10⁻⁶ sec

10⁻³³ sec

re-ionisation

dernière diffusion

égalité matière – rayonnement

nucléosynthèse primordiale disparition anti-hadrons confinement quarks

> fin inflation début ère rayonnement

rayonnement

Étoiles, galaxies, supernovae ... nous ...

Étoiles de population III

- Sans éléments lourds (uniquement ce qu'a produit BBN)
- ★ Très massives ~ $100 M_o$?
- ★ Encore très mal comprises ...
 - le fonctionnement des étoiles nécessite le cycle CNO, impossible avec les pop. III
- \star Traces ?
 - galaxies faibles bleues ?
 - Fond diffus IR de Spitzer ?

Galaxies

- Formation des galaxies ~ entre 10 Gyr et aujourd'hui (pas encore terminée)
 Supernovae, étoiles de
- population II et l
- ★ Enrichissement en éléments lourds
- ★ Formation du système solaire ~ 8 Gyr

Plan du cours

Cours II

- * L'Univers de Friedman-Lemaître-Robertson-Walker (FLRW)
 - Métrique FLRW
 - Redshift, taux d'expansion
 - Équations de Friedman
 - Densités des espèces composant l'Univers
 - Expansion lors de diverses ères
 - Quelques mots sur le «Big Bang» ...
- F.A.Q. de cosmologie
- ★ Histoire «thermique» de l'Univers
 - Transitions de phase
 - Nucléosynthèse primordiale
 - Égalité matière-rayonnement
 - Découplage matière-rayonnement
 - Pic acoustique des baryons
 - Formation des structures
 - Ré-ionisation
 - premières étoiles, galaxies, supernovae ...
- ★ Matière noire

Matière noire

• Pourquoi ?

- \star Dynamique des amas
- ★ Courbes de rotation des galaxies
- ★ Formation des structures et fond diffus

• Quels candidats ?

- ★ Objets compacts
- ★ Particules «exotiques»
- ★ Modification de la gravité

Dynamique des amas

Fritz Zwicky (1933)

- ★ Amas de Coma
 - 2000 galaxies
 - vitesse ~ 300 km/s
 - rayon ~ qques Mpc
- ★ Mesure des vitesses
 - ightarrow Énergie cinétique $E_c = \frac{1}{2}mv^2$
- ★ Mesure des distances entre galaxies
 - \Rightarrow Énergie potentielle $E_p = -G \frac{m^2}{r}$
- ★ Équilibre dynamique (Viriel)
 - $E_p = -2E_c$
 - **Estimation de la masse** $m \propto r \times v^2$
- ➡ 100 à 500 fois la masse stellaire

Matière noire !

Lentillage gravitationnel

- La masse courbe l'espace-temps ★ Le trajet des photons est défléchi par la masse

 Un amas très massif va déformer les images des objets d'arrière-plan
 - Mirages gravitationnels (arcs, images multiples)
 - Lentillage faible : déformation légère des galaxies d'arrière plan
 - Ellipticité et orientations systématiques

Possibilité de reconstruire le potentiel gravitationnel de l'amas

Lentillage gravitationnel

- La masse courbe l'espace-temps ★ Le trajet des photons est défléchi par la masse

 Un amas très massif va déformer les images des objets d'arrière-plan
 - Mirages gravitationnels (arcs, images multiples)
 - Lentillage faible : déformation légère des galaxies d'arrière plan
 - Ellipticité et orientations systématiques

Possibilité de reconstruire le potentiel gravitationnel de l'amas

Lentillage gravitationnel

- La masse courbe l'espace-temps ★ Le trajet des photons est défléchi par la masse

 Un amas très massif va déformer les images des objets d'arrière-plan
 - Mirages gravitationnels (arcs, images multiples)
 - Lentillage faible : déformation légère des galaxies d'arrière plan
 - Ellipticité et orientations systématiques

Possibilité de reconstruire le potentiel gravitationnel de l'amas

Amas de galaxies Abell 1689 (HST)

Reconstruction du potentiel gravitationnel

Mauve : masse noire reconstruite par lentillage faible

Résultat : matière noire systématiquement majoritaire !

Emission X des amas

Plus récent (80's)

 La matière visible s'étend beaucoup plus loin que les étoiles

Gaz chaud (~10⁷-10⁸ K)

★ à l'équilibre hydrostatique dans le champ gravitationnel

★ On peut déterminer la masse totale

Gaz ~ le double de la matière visible en masse

Il faut de la matière noire (~ 85 %) pour chauffer suffisamment le gaz ! Amas Abell 2029

Image optique SDSS

Emission X des amas

Plus récent (80's)

 La matière visible s'étend beaucoup plus loin que les étoiles

Gaz chaud (~10⁷-10⁸ K)

- à l'équilibre hydrostatique dans le champ gravitationnel
- ★ On peut déterminer la masse totale
- Gaz ~ le double de la matière visible en masse
- Il faut de la matière noire (~ 85 %) pour chauffer suffisamment le gaz !

Amas Abell 2029

Image X Chandra

Emission X des amas

Plus récent (80's)

 La matière visible s'étend beaucoup plus loin que les étoiles

Gaz chaud (~10⁷-10⁸ K)

- ★ à l'équilibre hydrostatique dans le champ gravitationnel
- ★ On peut déterminer la masse totale
- Gaz ~ le double de la matière visible en masse
- Il faut de la matière noire (~ 85 %) pour chauffer suffisamment le gaz !

Amas Abell 2029

Image X Chandra

Image visible (Galaxies)

Image X (gaz) - Chandra

Image X (gaz)

Contours de weak lensing (masse)

Image X (gaz) - Chandra

Visible : Galaxies

X : Gaz

Lensing : masse

«Bullet Cluster»

- collision de deux amas
- Les galaxies et la matière noire sont non collisionnelles
 ★ Elles passent «sans se voir»
- Le gaz est collisionnel
 Il reste au centre, s'échauffe et des ondes de choc apparaîssent
- C'est l'argument le plus fort en faveur de la matière noire

Simulation Chandra

Matière noire Galactique

Matière noire Galactique

Vitesse de rotation typique des étoiles : 200 km/s

Le profil de vitesse permet de reconstruire la masse !

Halo de matière noire

 La masse d'une galaxie s'étend bien plus loin que sa masse stellaire visible

 Il existe un halo de matière noire autour
 ★ Jusqu'à ~ 200 kpc
 ★ rapport Masse/Luminosité ~ 200

Halo de matière noire

 La masse d'une galaxie s'étend bien plus loin que sa masse stellaire visible

 Il existe un halo de matière noire autour
 ★ Jusqu'à ~ 200 kpc
 ★ rapport Masse/Luminosité ~ 200

Formation des structures et matière noire

- Les anisotropies initiales sont très faibles
 - ★ Fond diffus cosmologique : 3 K et fluctuations ~ 30 μ K
 - ★ Fluctuations primordiales ~ 1/100 000

• Effondrement de la matière ordinaire

- ★ commence à l'égalité matière-rayonnement
- \star Ensuite l'expansion freine la contraction

• Pour que celà fonctionne il faut:

- ★ Plus de matière pour expliquer tant d'effondrement
- ★ Une matière qui ait commencé à s'effondrer avant l'égalité matière-rayonnement
- ★ Des particules assez peu rapides (donc lourdes) pour ne pas s'échapper trop vite (et gommer les structures effondrées)

Il faut de la matière noire «froide» (CDM)

I.-Ch. Hamilton - Université Paris-Diderot - DEPAES 201

Candidats Matière noire

Objets compacts

★ trous noirs, étoiles ratées (naines brunes)

 Exclus par les observations de microlentilles gravitationnelles

• Particules massives

- ★ Supersymétrie (cf. LHC ...)
 - Toujours pas de détection
 - directe : ex/ Edelweiss, CDMS (peut être quelque chose avec DAMA)
 - Peut être quelque chose avec CDMS le 18/12 !

indirecte : observation gamma. ex/ HESS
 particules exotiques (Wimpzillas, ...)

Modifications de la gravité

★ MOdified Newtonian Dynamics (MOND)

 $F = \begin{cases} m \frac{a^2}{a_0} & \text{si } a < a_0 \\ ma & \text{si } a > a_0 \end{cases}$

- Nécessite «un peu» de matière noire quand même (neutrinos) ...
- En contradiction apparente avec les oscillations acoustiques de baryons

Candidats Matière noire

Objets compacts

★ trous noirs, étoiles ratées (naines brunes)

 Exclus par les observations de microlentilles gravitationnelles

Particules massives

- ★ Supersymétrie (cf. LHC ...)
 - Toujours pas de détection
 - directe : ex/ Edelweiss, CDMS (peut être quelque chose avec DAMA)
 - Peut être quelque chose avec CDMS le 18/12 !

indirecte : observation gamma. ex/ HESS
 particules exotiques (Wimpzillas, ...)

Modifications de la gravité

★ MOdified Newtonian Dynamics (MOND)

 $F = \begin{cases} m \frac{a^2}{a_0} & \text{si } a < a_0 \\ m a & \text{si } a > a_0 \end{cases}$

- Nécessite «un peu» de matière noire quand même (neutrinos) ...
- En contradiction apparente avec les oscillations acoustiques de baryons

Candidats Matière noire

Objets compacts

★ trous noirs, étoiles ratées (naines brunes)

 Exclus par les observations de microlentilles gravitationnelles

Particules massives

- Supersymétrie (cf. LHC ...)
 - Toujours pas de détection
 - directe : ex/ Edelweiss, CDMS (peut être quelque chose avec DAMA)
 - Peut être quelque chose avec CDMS le 18/12 !

indirecte : observation gamma. ex/ HESS particules exotiques (Wimpzillas, ...)

Modifications de la gravité

★ MOdified Newtonian Dynamics (MOND)

 $F = \begin{cases} m \frac{a^2}{a_0} & \text{si } a < a_0 \\ ma & \text{si } a > a_0 \end{cases}$

- Nécessite «un peu» de matière noire quand même (neutrinos) ...
- En contradiction apparente avec les oscillations acoustiques de baryons

Candidats Matière noire

Objets compacts

★ trous noirs, étoiles ratées (naines brunes)

 Exclus par les observations de microlentilles gravitationnelles

Particules massives

- Supersymétrie (cf. LHC ...)
 - Toujours pas de détection
 - directe : ex/ Edelweiss, CDMS (peut être quelque chose avec DAMA)
 - Peut être quelque chose avec CDMS le 18/12 !

indirecte : observation gamma. ex/ HESS
particules exotiques (Wimpzillas, ...)

Modifications de la gravité

★ MOdified Newtonian Dynamics (MOND)

 $F = \begin{cases} m\frac{a^2}{a_0} & \text{si } a < a_0 \\ ma & \text{si } a > a_0 \end{cases}$

- Nécessite «un peu» de matière noire quand même (neutrinos) ...
- En contradiction apparente avec les oscillations acoustiques de baryons

Candidats Matière noire

Objets compacts

★ trous noirs, étoiles ratées (naines brunes)

 Exclus par les observations de microlentilles gravitationnelles

Particules massives

- Supersymétrie (cf. LHC ...)
 - Toujours pas de détection
 - directe : ex/ Edelweiss, CDMS (peut être quelque chose avec DAMA)
 - Peut être quelque chose avec CDMS le 18/12 !

indirecte : observation gamma. ex/ HESS
particules exotiques (Wimpzillas, ...)

Modifications de la gravi

MOdified Newtonian Dynamics (MOND)

$$F = \begin{cases} m \frac{a^2}{a_0} & \text{si } a < a_0\\ ma & \text{si } a > a_0 \end{cases}$$

- Nécessite «un peu» de matière noire quand même (neutrinos) ...
- En contradiction apparente avec les oscillations acoustiques de baryons

