

Report on Borexino activities

Davide Franco Milano University & INFN

Physics Results (3 papers since October 2009!):

- ✓ Observation of Geo-Neutrinos
- ✓ Measurement of ⁸B neutrinos flux with 3 MeV threshold

Limit on Pauli Exclusion Principle violating nuclear transitions

Understanding the detector (next 4 papers):

- ✓ ⁷Be analysis with error < 5%
- ✓ Monte Carlo
- ✓ Calibrations
- Muons and cosmogenics

Geoneutrinos

A new probe of the Earth:

- What is the radiogenic contribution to the terrestrial heat?
- What is the distribution of the radiogenic elements?
- How much in the crust and how much in the mantle?
- ✓ Core composition: Ni+Fe and ? 40K, geo-reactor ?

- Earth \overline{v} flux ~ 10⁶ cm⁻² s⁻¹:
 - \checkmark ²³⁸U → ²⁰⁶Pb + 8 α + 8 e⁻ + 6 \overline{v} + 51.7 MeV
 - 232Th $\rightarrow 208$ Pb + 6 α + 4 e^{-} + 4 \overline{v} + 42.8 MeV
 - ✓ ⁴⁰K → ⁴⁰Ca + e⁻ + 1 v̄ + 1.32 MeV
 - \checkmark released heat and \overline{v} flux with fixed ratio!

The main backgrounds: reactor anti-neutrinos and radioactive contamination Borexino: S(geo):S(reactors) ~ 1:0.9 KamLAND: S(geo):S(reactors) ~ 1:6.7

LNGS – May 6th,2010

D. Franco – Milano University & INFN

Heat Flow

The signature in Borexino

LNGS – May 6th, 2010

D. Franco – Milano University & INFN

The background in Borexino

Reactor antineutrinos

Differential reactor anti-v spectrum:

$$\Phi(E_{\bar{\nu}_e}) = \sum_{r=1}^{N_{react}} \sum_{m=1}^{N_{month}} \frac{T_m}{4\pi L_r^2} P_{rm} \times \\ \times \sum_{i=1}^4 \frac{f_i}{E_i} \phi_i(E_{\bar{\nu}_e}) P_{ee}(E_{\bar{\nu}_e};\hat{\theta}, L_r)$$

- T_m : livetime in the mth-month
- *P*_{*rm*}: effective thermal power
- *i*: index of the spectral component (²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu)
- **f**_{*i*}: power fraction of the i-th component
- ϕ_i : energy spectrum of the i-th component

Rate in the NW: 2.0 ± 0.1 cpy/ 100 t

Error:

Source	Error	Source	Error
	[%]		[%]
Fuel composition	3.2	θ_{12}	2.6
$\phi(E_{ar{ u}})$	2.5	P_{rm}	2.0
Long-lived isotopes	1.0	E_i	0.6
$\sigma_{ar{ u}p}$	0.4	L_r	0.4
Δm^2_{12}	0.02		\bigcirc
Total			(5.38)

Muon correlated events

Cosmogenic ⁹Li and ⁸He decay via β -n $\tau \sim 150 \text{ ms}$

2 s detector veto after each muon in the ID
Residual background: 0.03 ± 0.02 cpy/ 100 t

Fast neutrons

Muon rejection efficiency with OD > 99.5% 2 ms detector veto after each muon in the OD Residual background: <0.01 cpy/ 100 t (90% C.L.)

✓ Radiogenic ¹³C(α,n)¹⁶O

²¹⁰Po α emitter: 12 cpd/ 100 t
 ¹³C low abundance: ¹³C/¹²C ~ 1.1%
 Contamination: 0.021 ± 0.002 cpy/ 100 t

Random coincidences

Searching for events in a window of 2ms - 2s: <0.003 cpy/ 100 t</pre> (90% C.L.)

D. Franco – Milano University & INFN

LNGS – May 6th, 2010

21 selected anti-v candidates in 252.6 t y

Selection cuts - ϵ (with MC): 0.85 ± 0.01

Source	Background		
	$[\text{events}/(100 \text{ton} \cdot \text{yr})]$		
⁹ Li- ⁸ He	0.03 ± 0.02		
Fast <i>n</i> 's (μ 's in WT)	< 0.01		
Fast <i>n</i> 's (μ 's in rock)	< 0.04		
Untagged muons	0.011 ± 0.001		
Accidental coincidences	0.080 ± 0.001		
Time corr. background	< 0.026		
(γ, \mathbf{n})	< 0.003		
Spontaneous fission in PMTs	0.0030 ± 0.0003		
(α, \mathbf{n}) in scintillator	0.014 ± 0.001		
(α, \mathbf{n}) in the buffer	<0.061		
Total	0.14 ± 0.02		

in 532 days of data taking, with a fiducial exposure, after all cuts, of 252.6 t y

15 events in the NW

LNGS – May 6th,2010

Observation of geoneutrinos

$$N_{\text{geo}} = 9.9^{+4.1}_{-3.4} \begin{pmatrix} +14.6 \\ -8.2 \end{pmatrix}$$
 events
 $N_{\text{react}} = 10.7^{+4.3}_{-3.4} \begin{pmatrix} +15.8 \\ -8.0 \end{pmatrix}$ events

Allowed regions at 68%, 90% and 99.73% C.L.

LNGS – May 6th, 2010

Phys. Lett. B687:299-304,2010

⁸B-v analysis with 3 MeV energy threshold

ideal candles to explore the transition region between vacuum and matter-enhanced dominated oscillation regimes

LNGS – May 6th, 2010

Background in the 3.0-16.3 MeV range

live-time: 487.7 days

- ✓ Cosmic Muons
- ✓ External background
- High energy gamma's from neutron captures
- ✓ ²⁰⁸TI and ²¹⁴Bi from radon

emanation from nylon vessel

- Cosmogenic isotopes
- ✓ ²¹⁴Bi and ²⁰⁸TI from ²³⁸U and
 ²³²Th bulk contamination

LNGS – May 6th, 2010

S/B ratio ~ 1/6000

Muon and neutron cuts

Muon cut:

- All events detected by the **outer detector** are rejected
- Pulse shape analysis with inner detector scintillation light
- Residual muon rate: <10-3 c/d

Neutron cut:

- 2 ms veto after each muon detected by the outer detector, in order to reject induced neutrons (mean capture time ~250 μ s)
- Residual neutron rate: ~10-4 c/d

Count-rate: 4.8 c/d/100 ton

External Background Cut

Radius calibration with AmBe source at R = 3 m as function of the energy

Residuals from ²²²Rn and ²²⁰Rn emanated from the vessel with radial fit

Count-rate: 2.3 c/d/100 ton

LNGS – May 6th,2010

Muon induced radioactive nuclides

Isotopes	τ	Q	Decay	Expected Rate	Fraction	Expected Rate $> 3 \ MeV$	Measured Rate $> 3 MeV$
		[MeV]		[cpd/100 t]	> 3~MeV	[cpd/100 t]	[cpd/100 t]
¹² B	0.03 s	13.4	β^{-}	1.41 ± 0.04	0.886	$1.25\pm$ 0.03	1.48 ± 0.06
⁸ He	0.17 s	10.6	β^{-}	0.026 ± 0.012	0.898		
⁹ C	0.19s	16.5	β^+	0.096 ± 0.031	0.965	$(1.8 \pm 0.3) imes 10^{-1}$	$(1.7 \pm 0.5) { imes} 10^{-1}$
⁹ Li	0.26 s	13.6	β^{-}	0.071 ± 0.005	0.932		
⁸ B	1.11 s	18.0	β^+	0.273 ± 0.062	0.938		
⁶ He	1.17 s	3.5	β^{-}	NA	0.009	$(6.0 \pm 0.8) imes 10^{-1}$	$(5.1 \pm 0.7) { imes} 10^{-1}$
⁸ Li	1.21 s	16.0	β^{-}	0.40 ± 0.07	0.875		
¹⁰ C	27.8 s	3.6	β^+	0.54 ± 0.04	0.012	$(6.5\pm0.5) imes10^{-3}$	$(6.6\pm1.8) imes10^{-3}$
¹¹ Be	19.9 s	11.5	β^{-}	0.035 ± 0.006	0.902	$(3.2 \pm 0.5) imes 10^{-2}$	$(3.6\pm3.5) imes10^{-2}$

Rejection methods:

 ✓ 6.5 s detector veto after each crossing muon (29.2% dead time – livetime: 345.3 days)
 ✓ ¹⁰C is tagged with the three-fold coincidence technique with the muon parent and the neutron capture (ε = 0.74)

¹¹Be is statistically subtracted

Count-rate: 0.33 c/d/100 ton

LNGS – May 6th, 2010

Final spectrum

Systematic errors

Source	E>3 MeV		E>5 MeV	
	σ_+	σ_{-}	σ_+	σ_{-}
Energy threshold	3.6%	3.2%	6.1%	4.8%
Fiducial mass	3.8%	3.8%	3.8%	3.8%
Energy resolution	0.0%	2.5%	0.0%	3.0%
Total	5.2%	5.6%	7.2%	6.8%

⁸B solar neutrino flux measurements via elastic scattering

D. Franco – Milano University & INFN

LNGS – May 6th,2010

Comparison with models

First measurement of ⁸B-v: ✓ with liquid scintillator ✓ with the lowest energy threshold for a spectral measurement

Borexino is the first experiment able to investigate simultaneously, in real time, the vacuum and matter regimes of oscillations

Accepted by Phys. Rev. D

Limit on the PEP violation

The non-Paulian (NP) transitions are searched for in ¹²C nuclei in scintillator

Channel	Q, MeV	E, MeV		
$^{12}C \rightarrow ^{12}C^{NP} + \gamma$	16.4÷19.4	16.4÷19.4	E.M.	
$^{12}C \rightarrow ^{11}B^{NP} + p$	5.0÷9.0	4.6÷8.3		
$^{12}C \rightarrow ^{11}C^{NP} + n$	3.5÷7.9	3.2÷7.3	Strong	
$^{12}C \rightarrow ^{8}Be^{NP} + \alpha$	3.0÷7.0	0.07÷0.25		
$^{12}C \rightarrow ^{12}N^{NP} + e^{-} + v$	18.9 ±2	0.0÷18.9	Moak	
$^{12}C \rightarrow ^{12}B^{NP} + e^+ + v$	17.8 ±2	0.0÷17.8	vveak	

LNGS – May 6th,2010

Expected signals and measured spectrum

LNGS – May 6th, 2010

New limits obtained by Borexino

Channel	F. MeV	τ _{lim} , y	τ _{lim} , y	Previous experiments
ondinici		BOREXINO	CTF	and limits
$^{12}C \rightarrow ^{12}C^{NP} \gamma$	17.5	5.0 [.] 10 ³¹	2.1.10 ²⁷	4.2.10 ²⁴ NEMO-II
¹⁶ Ο→ ¹⁶ Ο ^{NP} + γ	21.8	-	2.1 [.] 10 ²⁷	1.0.10 ³² Kamiokande
$12C \rightarrow 11PNP + p$	1992	8 0.1029	5 0.1026	1.7 [.] 10 ²⁵ ELEGANT V.
'²℃→''B'''+p	4.0-0.2	0.9.10-2	5.0 10-3	6.9 [.] 10 ²⁴ DAMA (Na+I)
$^{12}C \rightarrow ^{11}C^{NP}$ + n	2.2	3.4 [.] 10 ³⁰	3.7 [.] 10 ²⁶	1.0 [.] 10 ²⁰ Kishimoto et al
$^{12}C \rightarrow ^{8}Be^{NP} + \alpha$	1.0-3.0	-	6.1 [.] 10 ²³	-
120 12NINP	10.0	2 4 4 0 3 0	7 6 4 0 27	3.1.10 ²⁴ NEMO-II
$V \rightarrow V = [N + V_e] = [0.9]$	3.1.10**	7.0.10-7	~8·10 ²⁷ LSD	
$^{12}C \rightarrow ^{12}B^{NP}+e^{+}v_{e}$	17.8	2.1 [.] 10 ³⁰	7.7 [.] 10 ²⁷	2.6 [.] 10 ²⁴ NEMO-II

The Borexino results are 3-4 orders of magnitude stronger then CTF ones

Limits for NP transitions in ¹²C with p-,n- and β^{\pm} - emissions are the best to date

LNGS – May 6th,2010

The relative strength of the NP transitions to the Normal Transitions

Channel	$\lambda^{\rm NP}, {\rm s}^{-1}(^{12}{ m C})$	$\Gamma^{\rm NT} = \hbar \lambda^{\rm NT}$	$\lambda^{\rm NT}$, s ⁻¹ (¹² C)	$\lambda^{ m NP}/\lambda^{ m NT}$	Previous
¹² C→ ¹² C ^{NP} + γ	5.0 [.] 10 ⁻³⁹	0.0015 MeV	2.3 [.] 10 ¹⁸	≤ 2.2 ·10 ⁻⁵⁷	≤ 2.3 ·10 ⁻⁵⁷
¹² C→ ¹¹ B(C) ^{NP} + p(n)	7.4 [.] 10 ⁻³⁸	12 MeV	1.8 [.] 10 ²²	≤ 4.1 [.] 10 ⁻⁶⁰	≤ 3.5 [.] 10 ⁻⁵⁵
¹² C→ ¹² N(B) ^{NP} +e [±] + v	4.1 [.] 10 ⁻³⁸	1.4 [.] 10 ⁻¹⁸ eV	2.0 [.] 10 ⁻³	≤ 2.1 .10 ⁻³⁵	≤ 6.5 [.] 10 ⁻³⁴

The decay width of nuclear E1 γ -transition from P- to S-shell given by the Weisskopf estimate is $\Gamma_{\gamma} \sim 1.5 \text{ keV}$. The ratio $\lambda^{\text{NP}} / \lambda^{\text{NT}}$ is less then 2.2.10⁻⁵⁷ (90% c.l.)

The width of hadrons emission is 2-3 orders larger width of γ -transition. The measured width of S-hole state in ¹²C is $\Gamma_h \approx 12 \text{ MeV}$. The detection of p or n gives a more stringent limit on the relative strength of NP transitions then the detection of γ 's if one can set a similar limit on the lifetime for both decays. The obtained limit is $\lambda^{NP} / \lambda^{NT} \leq 4.1 \cdot 10^{-60}$.

The NP $\beta \pm$ -transitions are first-order forbidden P \rightarrow S transitions. The log(ft) values for such first forbidden transitions range from 6 to 9, conservative value (9) corresponds to life-time $\tau_{\beta} \sim 500$ and level width $\Gamma_{\beta} = \hbar \lambda = \hbar / \tau = 1.4 \cdot 10^{-18} \text{ eV}$, so $\lambda^{\text{NP}} / \lambda^{\text{NT}} \leq 2.1 \cdot 10^{-35}$

Phys. Rev. C81:034317,2010

LNGS – May 6th,2010

Borexino Monte Carlo

Geant4-based Tracking Code: G4Bx + electronic simulation (BxElec)

15 event generators

- ✓ Solar neutrinos✓ Cosmic muons
- ✓ Neutrons from the rock
- ✓Neutrinos from CNGS
- Muon cascades from FLUKA

Physics

√...

- ✓ Electromagnetic interaction
- ✓Optical processes
- ✓Hadronic processes
- ✓Isotope production

Geometry and materials

Inner and outer detectorsSurrounding rocks

Each photon is tracked!

LNGS – May 6th, 2010

3% accuracy in light propagation

Fine-tuning is ongoing!

Calibrations

Detector response vs position:

✓100 Hz ¹⁴C+²²²Rn in scintillator in >100 positions

Quenching and energy scale:

✓ Beta: ¹⁴C, ²²²Rn in scintillator
 ✓ Alpha: ²²²Rn in scintillator
 ✓ Gamma: ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ²⁰³Hg, ⁶⁵Zn, ⁴⁰K, ⁸⁵Sr, ⁵⁴Mn

✓Neutron: AmBe

Muons and cosmogenics

Muons

- μ identified by ID and OD
- ID based on pulse shape analysis
- Rejection factor: > 10³ (conservative)

Cosmogenic isotopes

- Estimation of cosmogenic isotope production rates
- 11 C is rejected with the TFC (~80%)

High efficiency in neutron tagging

D. Franco – Milano University & INFN

LNGS – May 6th, 2010

⁷Be-v analysis with MC spectra

LNGS – May 6th, 2010

D. Franco – Milano University & INFN

Next step: purifications

- Upgraded distillation system (2/3 by Princeton and 1/3 by INFN) is under construction to potential the PPO purification
- ✓ R&D for **purification in loop**
- We are evaluating if starting to purify with water extraction or waiting for the new distillation plant
- Leak: DMP removed from the buffer and vessel stability reached. We are evaluating if we can avoid any refilling on a long term period (4 years)

Borexino data taking is not over! High Borexino data statistics can provide promising results

Conclusions

3 physics papers since October 2009:
 ✓ Observation of Geo-Neutrinos at 4.2 sigmas
 ✓ First spectral measurement of ⁸B neutrinos flux in scintillator

and with 3 MeV threshold

✓ Best limit on Pauli Exclusion Principle with violating nuclear transitions

4 papers in preparation, demonstrating our accurate understanding of the detector

- ✓⁷Be analysis
- ✓ Monte Carlo development
- ✓ Calibrations
- Muons and cosmogenics