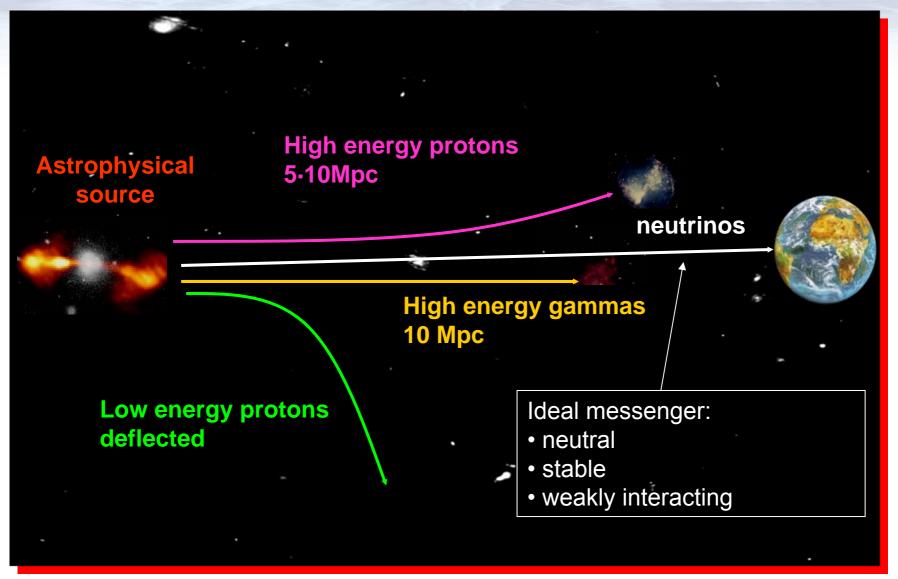


Neutrino Physics with Borexino

APC January 26, 2010 – Paris

Davide Franco Milano University & INFN


Outline

- ✓ Neutrinos from the Sun
- ✓ The physics of Borexino
- ✓ The Borexino detector
- ✓ The "radio-purity" challenge
- ✓ The reached goals (7 Be, 8 B and μ_{v})
- ✓ Near and far future goals

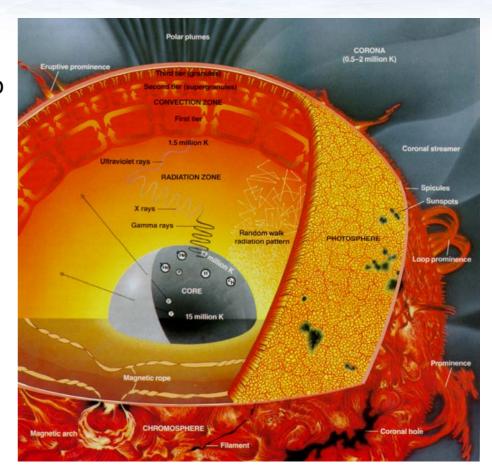
Neutrinos: cosmic messengers

Messengers from the Sun's core

√ Core (0-0.25 R_s)

- ✓ Nuclear reactions: T~1.5 10⁷ °K
- ✓ energy chains pp e CNO (neutrino production)

✓ Radiative region (0.25-0.75 Rs)

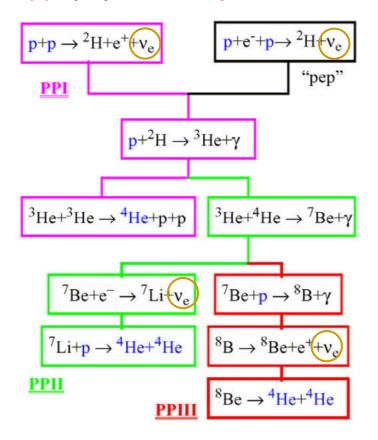

✓ Photons carry energy in ~ 10⁵ y

✓ Convective region (0.75-1 Rs)

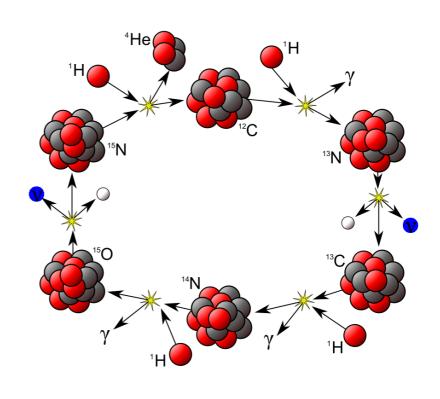
- ✓ Strong convection and turbulence
- √ Complex surface phenomena

√ Corona (> 1 Rs)

- ✓ Complex magneto-hydrodynamic phenomena
- ✓ Gas at T~ 106 °K

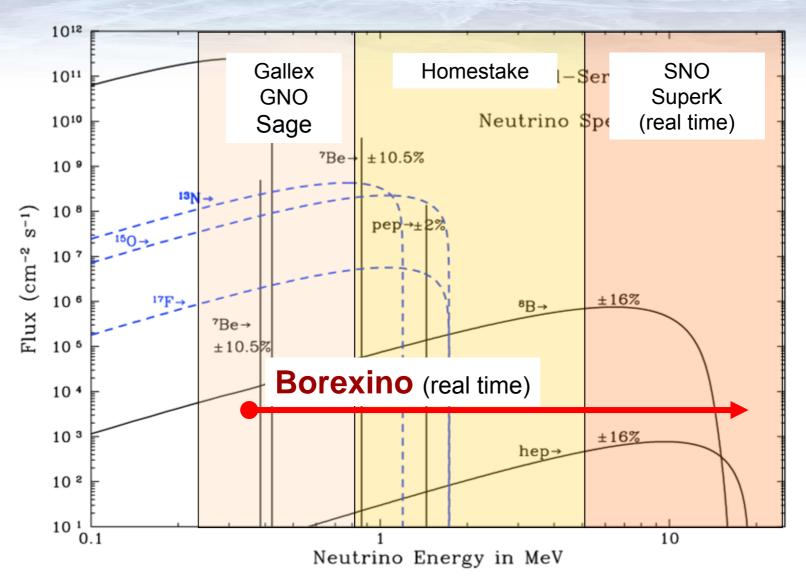


Neutrino Production In The Sun

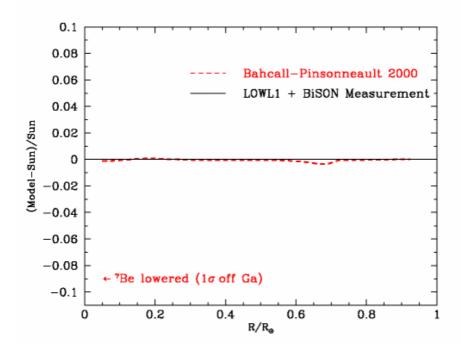

pp chain:

pp, pep, 7 Be, hep ,and 8 B $_{V}$

CNO cycle:


¹³N, ¹⁵O, and ¹⁷F ν

Solar Neutrino Spectra



The Standard Solar Model before 2004

One fundamental input of the Standard Solar Model is the **metallicity** of the Sun - abundance of all elements above Helium:

The Standard Solar Model, based on the old metallicity derived by Grevesse and Sauval (Space Sci. Rev. **85**, 161 (1998)), was in **agreement within 0.5 in %** with the solar sound speed measured by helioseismology.

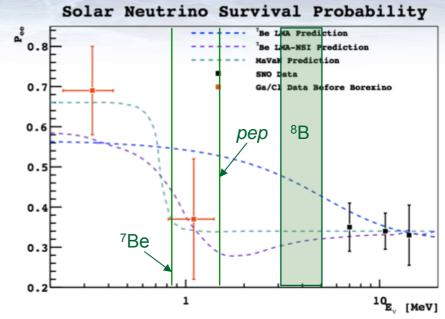
The Standard Solar Model after 2004

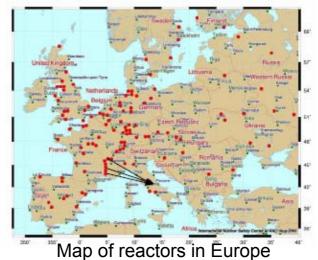
Latest work by Asplund, Grevesse and Sauval (Nucl. Phys. A **777**, 1 (2006)) indicates a **lower** metallicity **by a factor ~2**. This result destroys the agreement with helioseismology

[cm ⁻² s ⁻¹]	pp (10 ¹⁰)	pep (10 ¹⁰)	hep (10 ³)	⁷ Be (10 ⁹)	⁸ B (10 ⁶)	¹³ N (10 ⁸)	¹⁵ O (10 ⁸)	¹⁷ F (10 ⁶)
BS05 AGS 98	6.06	1.45	8.25	4.84	5.69	3.07	2.33	5.84
BS05 AGS 05	5.99	1.42	7.93	4.34	4.51	2.01	1.45	3.25
Δ	-1%	-2%	-4%	-12%	-23%	-42%	-47%	-57%

Solar neutrino measurements can solve the problem!

Borexino goals: solar physics


- ✓ First ever observations of sub-MeV neutrinos in real time.
- ✓ Check the balance between photon luminosity and neutrino luminosity of the Sun
- ✓ CNO neutrinos (direct indication of metallicity in the Sun's core)
- ✓ pep neutrinos (indirect constraint on pp neutrino flux)
- ✓ Low energy (3-5 MeV) ⁸B neutrinos
- ✓ Tail end of pp neutrino spectrum?



Borexino goals: neutrino physics

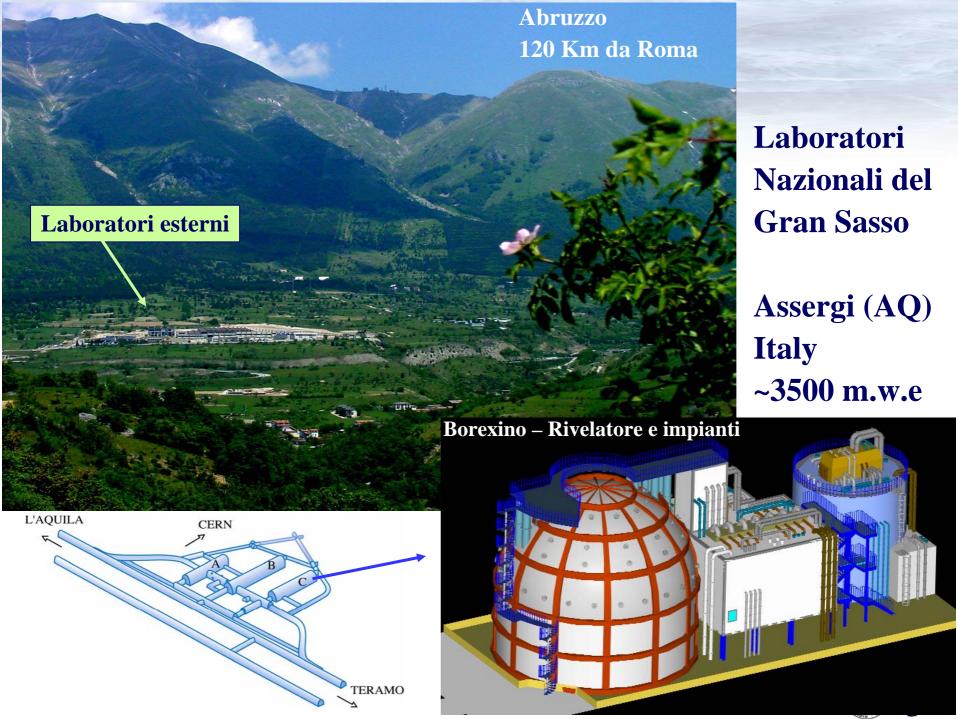
- ✓ Test of the matter-vacuum oscillation transition with ⁷Be, pep, and low energy ⁸B neutrinos
- ✓ Limit on the **neutrino magnetic moment** by
 analyzing the ⁷Be energy
 spectrum and with Cr source
- ✓ SNEWS network for supernovae
- ✓ First evidence (>3σ) of geoneutrinos

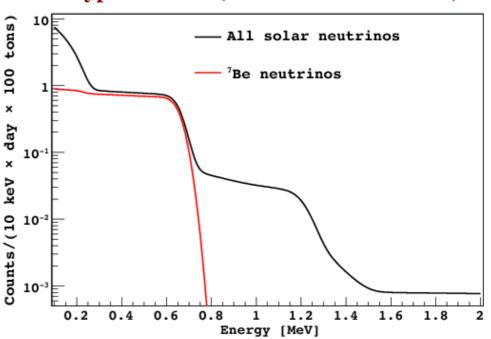
Borexino Collaboration

Milano

Princeton University

Virginia Tech. University




Detection principles and v signature

- ✓ Borexino detects solar v via their elastic scattering off electrons in a volume of highly purified liquid scintillator
 - ✓ Mono-energetic **0.862 MeV** 7 Be $_{V}$ are the main target, and the only considered so far
 - ✓ Mono-energetic pep v , CNO v and possibly pp v will be studied in the future
- Detection via scintillation light:
 - √ Very low energy threshold
 - ✓ Good position reconstruction
 - √ Good energy resolution

BUT...

- ✓ No direction measurement
- The v induced events can't be distinguished from other β events due to natural radioactivity
- ✓ Extreme radiopurity of the scintillator is a must!

Typical v rate (SSM+LMA+Borexino)

Borexino Background

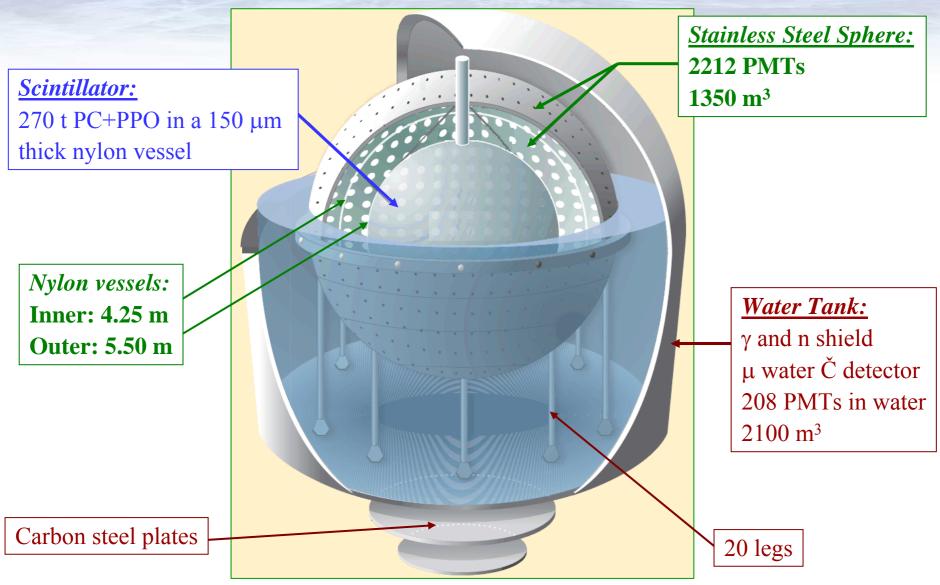
Expected solar neutrino rate in 100 tons of scintillator ~ 50 counts/day (~ 5 10-9 Bq/kg)

Just for comparison:

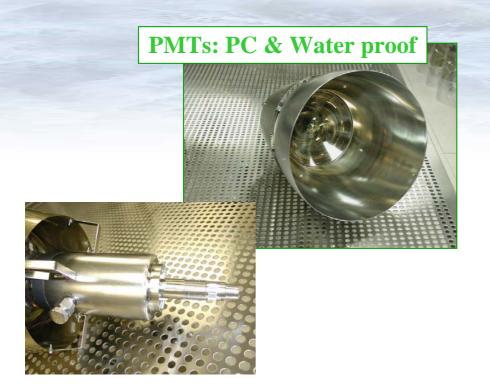
Natural water ~ 10 Bq/kg in ²³⁸U, ²³²Th and ⁴⁰K

Air $\sim 10 \text{ Bq/m}^3 \text{ in } ^{39}\text{Ar}, ^{85}\text{Kr} \text{ and } ^{222}\text{Rn}$

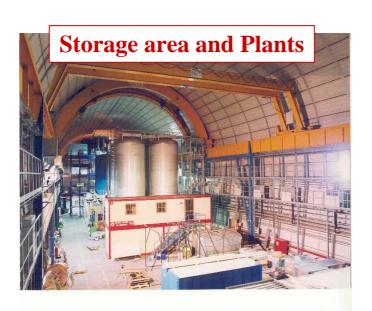
Typical rock $\sim 100-1000$ Bq/kg in 238 U, 232 Th and 40 K


BX scintillator must be **9/10 order of magnitude less** radioactive than anything on earth!

- ✓ Low background nylon vessel fabricated in hermetically sealed low radon clean room (~1 yr)
- ✓ Rapid transport of scintillator solvent (PC) from production plant to underground lab to avoid cosmogenic production of radioactivity (⁷Be)
- ✓ Underground purification plant to distill scintillator components.
- ✓ Gas stripping of scintllator with special nitrogen free of radioactive 85Kr and 39Ar from air
- ✓ All materials **electropolished SS or teflon**, precision cleaned with a dedicated cleaning module

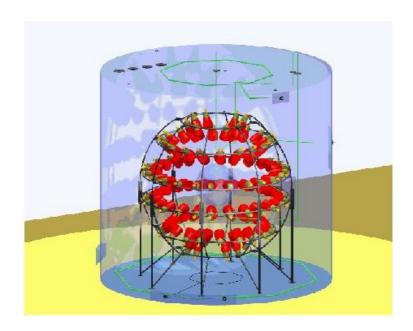


Detector layout and main features

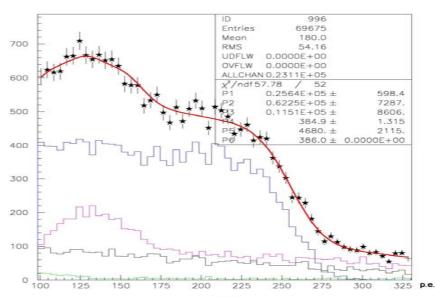


Davide Franco - Università di Milano & INFN

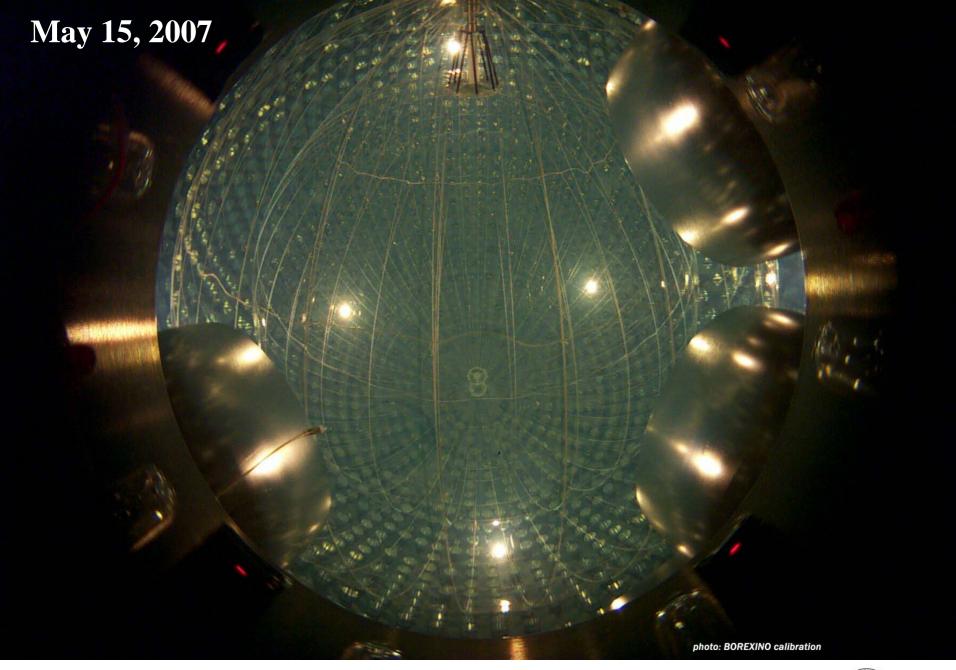
Davide Franco – Università di Milano & INFN

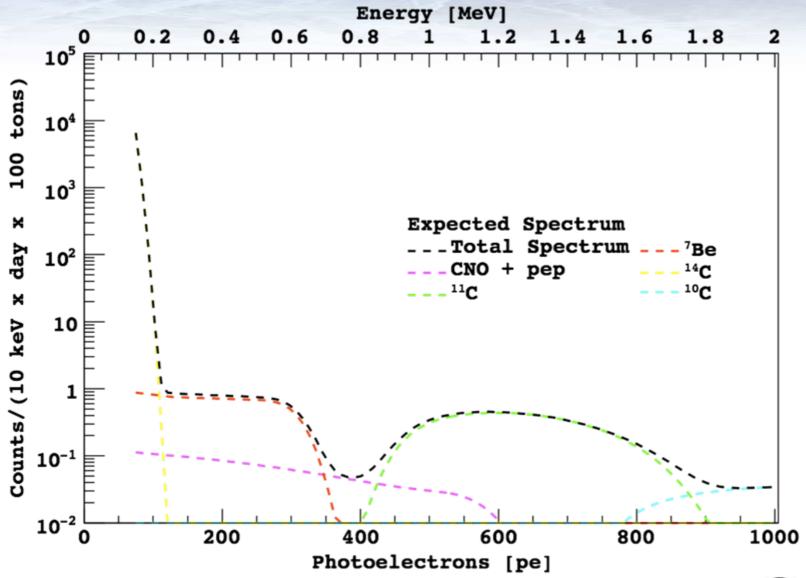


APC - January 26, 2009


Counting Test Facility

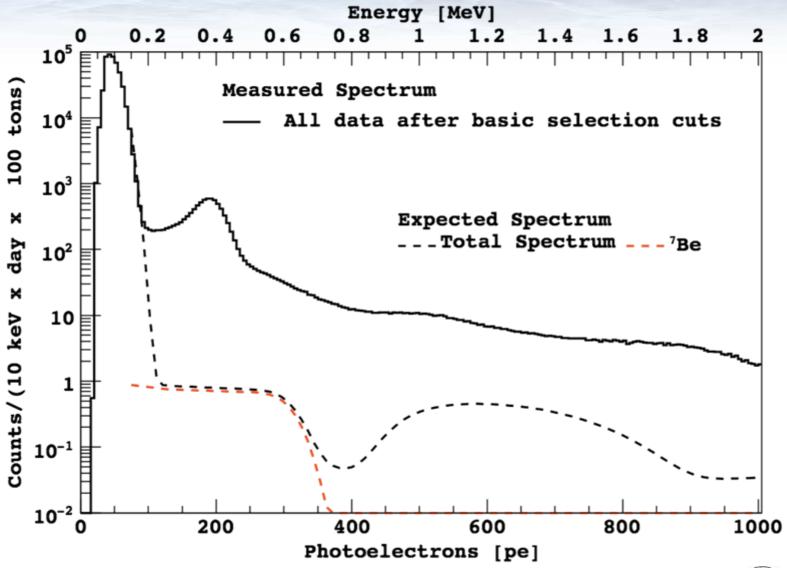
- ✓CTF is a small scale prototype of Borexino:
- √ ~ 4 tons of scintillator
- √ 100 PMTs
- ✓ Buffer of water
- ✓ Muon veto
- √ Vessel radius: 1 m

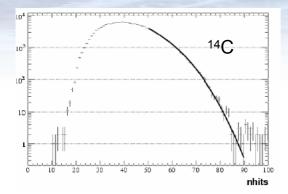

CTF demonstrates the Borexino feasibility

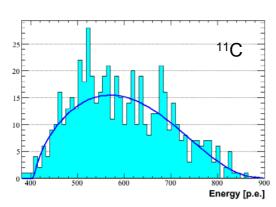


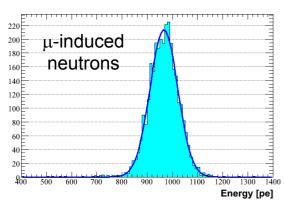
Borexino background

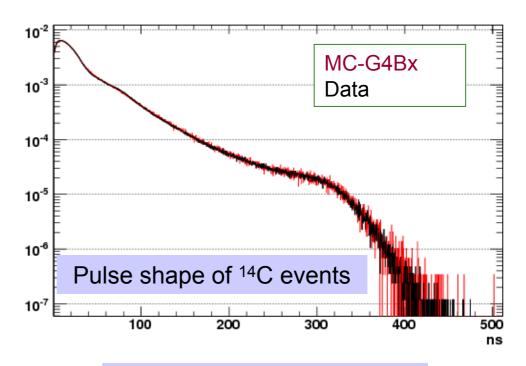
RadioIsotope Concentration or Flux Strategy for Reduction						
Name	Source	Typical	Required	Hardware Software		Achieved
μ	cosmic	~200 s ⁻¹ m ⁻²	~ 10 ⁻¹⁰	Underground	Cherenkov signal	<10-10
		at sea level		Cherenkov detector	PS analysis	(overall)
Ext. γ	rock			Water Tank shielding	Fiducial Volume	negligible
Int. γ	PMTs, SSS			Material Selection	Fiducial Volume	negligible
	Water, Vessels			Clean constr. and handling		
14 C	Intrinsic PC/PPO	~ 10-12	~ 10 ⁻¹⁸	Old Oil, check in CTF	Threshold cut	~ 10 ⁻¹⁸
238 U	Dust	~ 10 ⁻⁵ -10 ⁻⁶ g/g	< 10 ⁻¹⁶ g/g	Distillation, Water Extraction		~ 2 10 ⁻¹⁷
²³² Th	Organometallic (?)	(dust)	(in scintillator)	Filtration, cleanliness		~ 7 10 ⁻¹⁸
⁷ Be	Cosmogenic (12C)	~ 3 10 ⁻² Bq/t	< 10 ⁻⁶ Bq/ton	Fast procurement, distillation	Not yet measurable	?
⁴⁰ K	Dust,	~ 2 10 ⁻⁶ g/g	< 10 ⁻¹⁴ g/g scin.	Water Extraction Not yet measurable		?
	PPO	(dust)	< 10 ⁻¹¹ g/g PPO	Distillation		
²¹⁰ Pb	Surface contam.			Cleanliness, distillation	Not yet measurable	?
	from ²²² Rn decay				(NOT in eq. with ²¹⁰ Po)	
²¹⁰ Po	Surface contam.			Cleanliness, distillation	Spectral analysis	~ 14
	from ²²² Rn decay				α/β stat. subtraction	~ 0.01 c/d/t
²²² Rn	air, emanation from	~ 10 Bq/l (air)	< 1 c/d/100 t	Water and PC N ₂ stripping, Delayed coincidence		< 0.02 c/d/t
	materials, vessels	~100 Bq/l (water)	(scintillator)	cleanliness, material selection		
³⁹ Ar	Air (nitrogen)	~17 mBq/m³ (air)	< 1 c/d/100 t	Select vendor, leak tightness	Not yet measurable	?
⁸⁵ Kr	Air (nitrogen)	~ 1 Bq/m³ in air	< 1 c/d/100 t	Select vendor, leak tightness	Spectral fit	= 25±3
				(learn how to measure it)	fast coincidence	= 29±14


Expected Spectrum

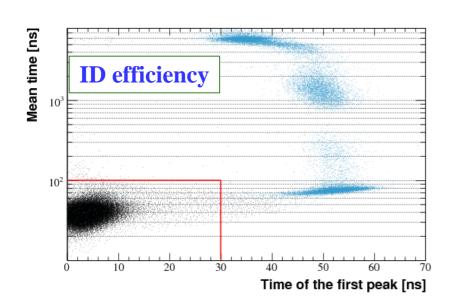

The starting point: no cut spectrum

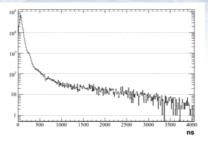


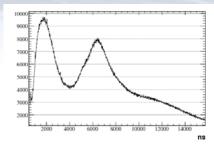



Energy scale

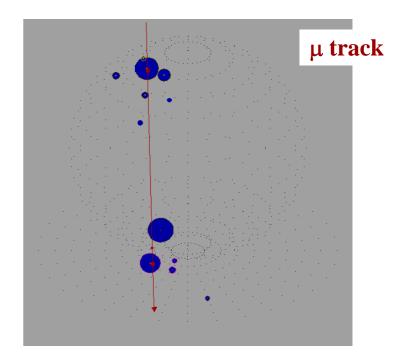
MC vs data comparison of photoelectron time distributions from ¹⁴C


LY = 510 (1%) p.e./MeV kB = 0.0197 (15%) cm/MeV Ph.Y. ~ 12000 photons/MeV



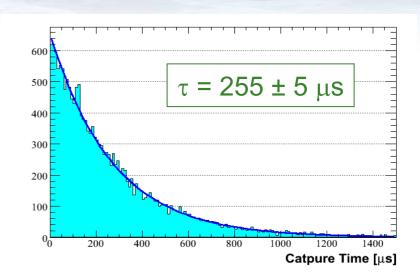

Detecting (and rejecting) cosmic muons

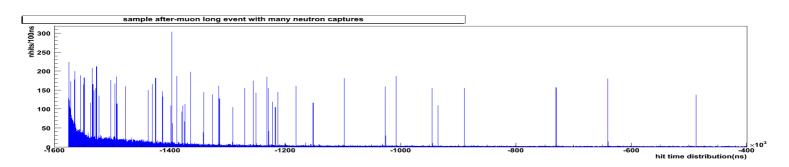
- μ are identified by ID and OD
 - ✓ OD eff: ~ 99%
 - ✓ ID based on pulse shape analysis
 - √ Rejection factor
 - \checkmark > 10³ (conservative)


μ pulses

 $\boldsymbol{\mu}$ crossing the buffer only

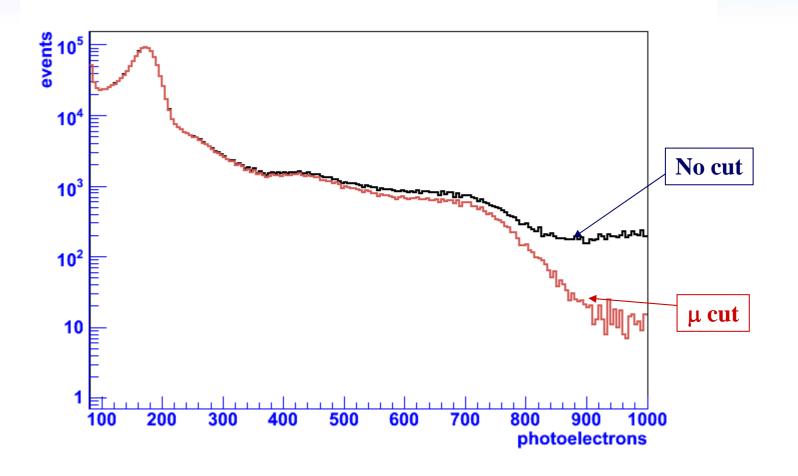
 $\boldsymbol{\mu}$ crossing the scintillator



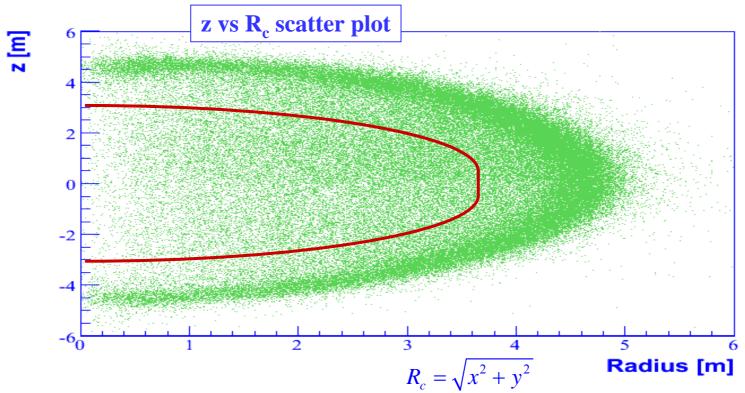


Detecting (and rejecting) cosmogenic neutrons

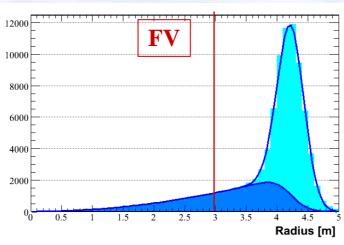
$$n + p \xrightarrow{\tau \sim 250 \mu s} d + \gamma$$

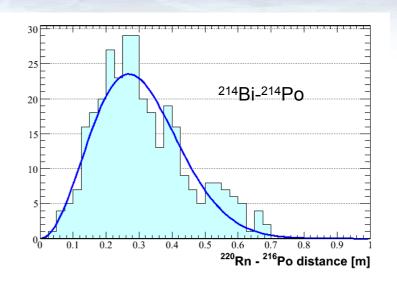

A dedicated trigger starts after each muon opening a gate for 1.6 ms. An offline clustering algorithm identifies neutron in high multiplicity events

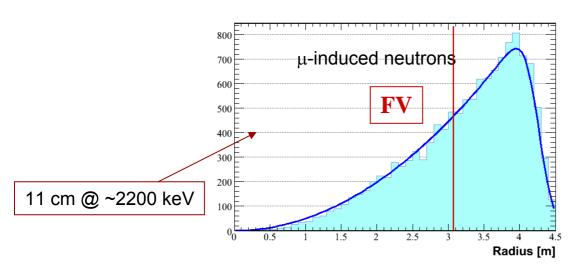
Muon and neutron cuts



Position reconstruction

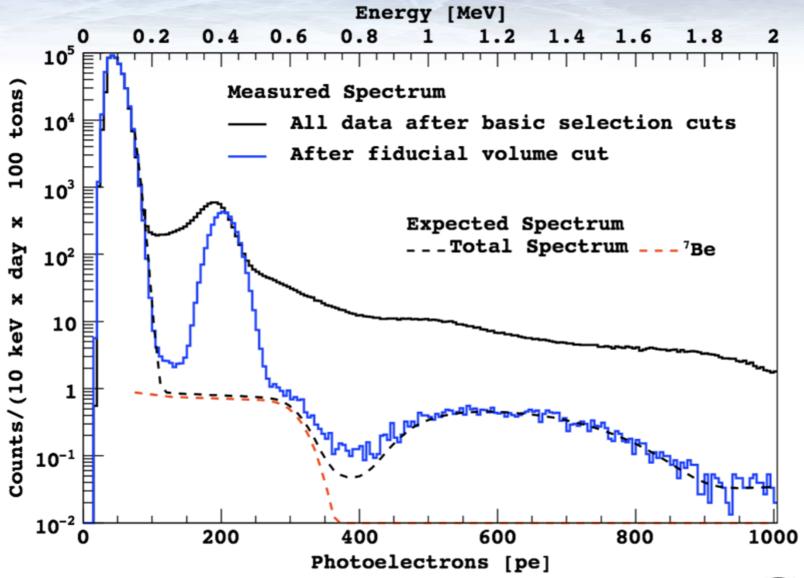

- ✓ Position reconstruction algorythms (we have 4 codes right now)
 - ✓ time of flight fit to hit time distribution
 - ✓ developed with MC, tested and validated in CTF
 - ✓ cross checked and tuned in Borexino with ²¹⁴Bi-²¹⁴Po events and ¹⁴C events





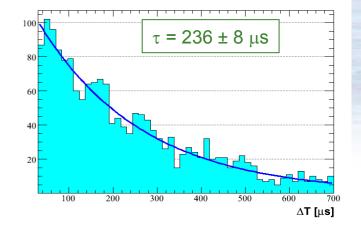
Spatial distributions and resolutions

⁷Be energy region (mainly ²¹⁰Po)



²¹⁴Bi-²¹⁴Po (~800 KeV) 14±2 cm

Spectrum after FV cut (100 tons)



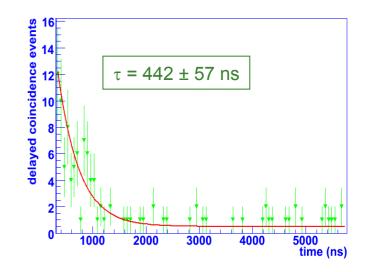
²³⁸U content

$$\tau = 236 \ \mu s$$

$$^{214}\text{Bi} \quad \xrightarrow{\beta} \quad \overset{214}{\longrightarrow} \text{Po} \quad \xrightarrow{210} \text{Pb}$$

$$3.2 \ \text{MeV} \quad \text{$\sim 700 \ keV \ eq.}$$

Assuming secular equilibrium and looking in the FV only: 0.02 cpd/tons corresponding to $^{238}\text{U} = (1.9 \pm 0.3) \times 10^{-17} \text{ g/g}$

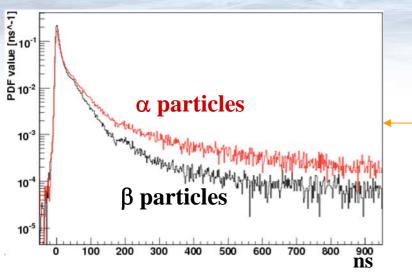

²³²Th content

$$\tau = 432.8 \text{ ns}$$

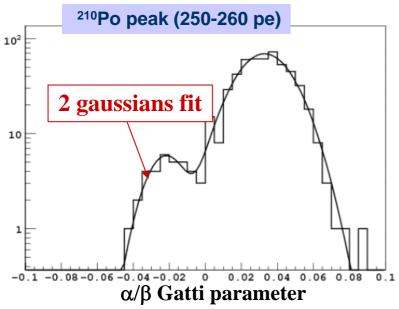
$$\beta \qquad \alpha$$

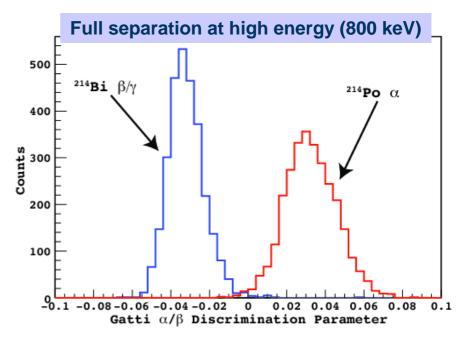
$$2^{12}\text{Bi} \longrightarrow {}^{212}\text{Po} \longrightarrow {}^{208}\text{Pb}$$

$$2.25 \text{ MeV} \sim 1000 \text{ keV eq.}$$



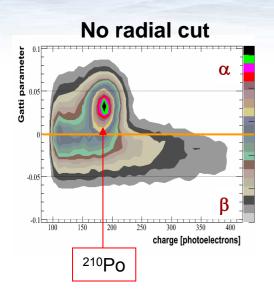
Assuming secular equilibrium and looking in the FV only_: 0.00256 cpd/ton corresponding to $^{232}\text{Th} = (6.8\pm1.5)\times10^{-18} \text{ g/g}$

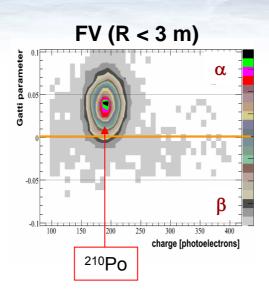


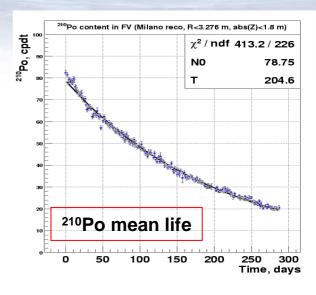


α/β discrimination

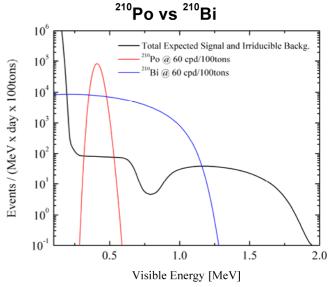
Average time profiles of the scintillation pulses emitted by a PC+PPO (1.5 g/l) mixture under alpha and beta irradiation

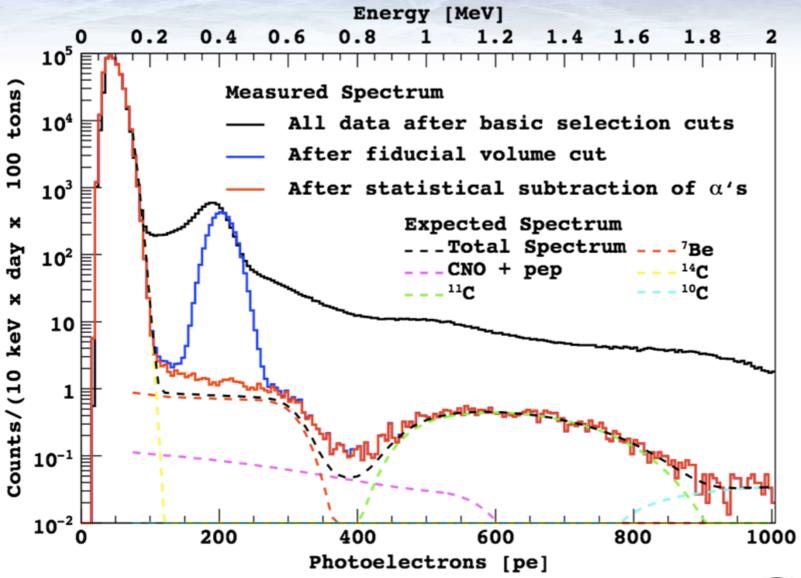


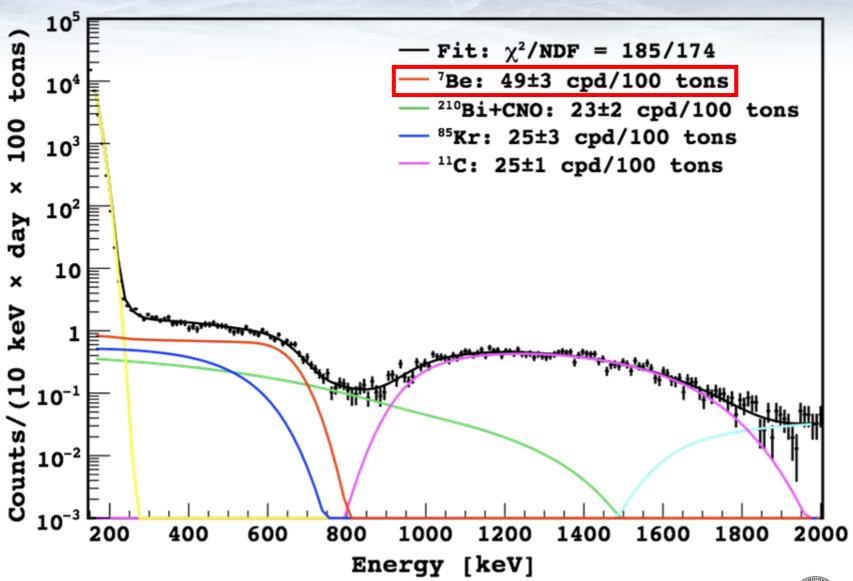


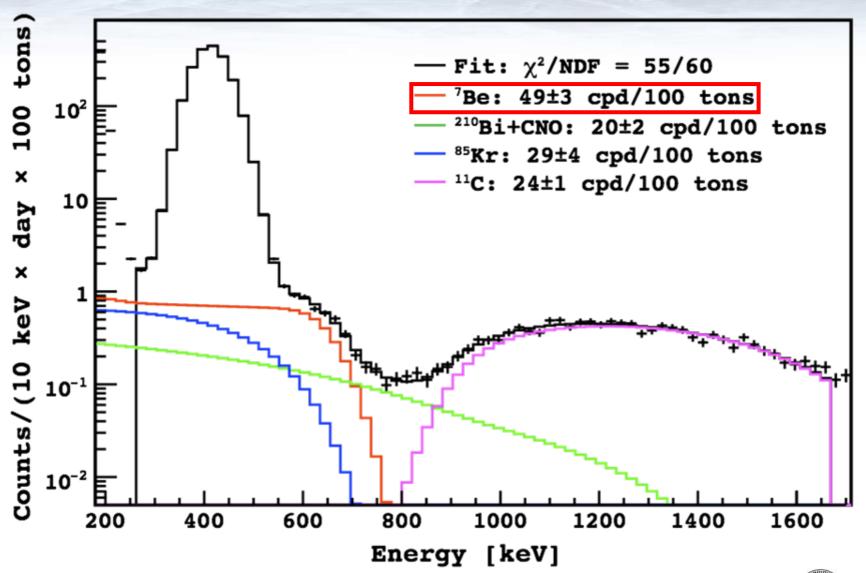


²¹⁰Po contamination




Not from ²¹⁰Pb


α/β statistical subtraction



New results with 192 days of statistics

New results with 192 days of statistics

Systematic and Final Result

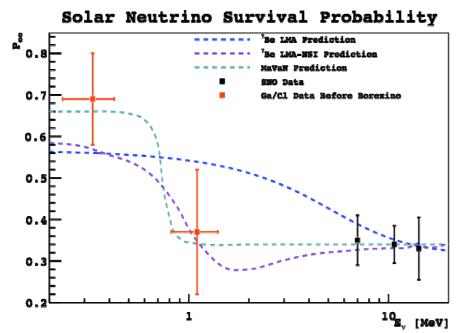
Estimated 1σ Systematic Uncertainties* [%]

Total Scintillator Mass	0.2
Fiducial Mass Ratio	6.0
Live Time	0.1
Detector Resp. Function	6.0
Cuts Efficiency	0.3
Total	8.5

*Prior to Calibration

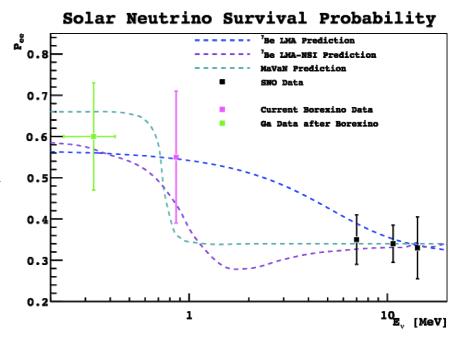
Expected interaction rate in absence of oscillations: 75±4 cpd/100 tons

for LMA-MSW oscillations: 48±4 cpd/100 tons, which means:


$$f_{\rm Be} = 1.03^{+0.24}_{-1.03}$$

⁷Be Rate: 49±3_{stat}±4_{syst} cpd/100 tons, which means

$$f_{
m Be} = 1.02 \pm 0.10$$



Before Borexino

After Borexino

Constraints on pp and CNO fluxes

Combining Borexino 7Be results with other experiments, the expected rate in Clorine and Gallium experiments is

$$R_l \; [\mathrm{SNU}] = \sum_i R_{l,i} f_i P_{ee}^{l,i} \;\;\;\; ext{where} \;\;\; egin{array}{l} l = \{\mathrm{Ga,Cl}\} \ i = \{pp,pep,\mathrm{CNO},^7\,\mathrm{Be},^8\,\mathrm{B}\} \ f_i \;\;\;\; ext{measured over predicted flux ratio} \ P_{ee}^{l,i} \;\;\;\; ext{Survival Probability} \end{array}$$

- \bullet R_{i,k} and P_{i,k} are calculated in the hypothesis of high-Z SSM and MSW LMA
- Rk are the rates actually measured by Clorine and Gallium experiments
- f8B is measured by SNO and SuperK to be 0.87 ±0.07
- f⁷Be =1.02 ±0.10 is given by Borexino results

Plus luminosity constraint: $0.919 f_{pp} + 0.075 f_{Be} + 0.0068 f_{CNO} = 1$

$$f_{pp} = 1.004^{+0.008}_{-0.020}$$

 $\mathcal{L}_{\text{CNO}}/\mathcal{L}_{\odot} < 6.2\% \ 3\sigma$

best determination of pp flux!

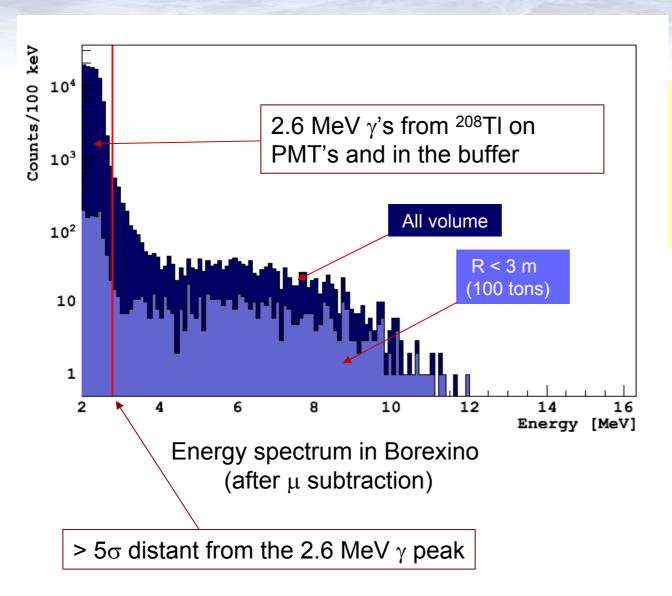
Neutrino Magnetic Moment

Neutrino-electron scattering is the most sensitive test for μ_{ν} search

$$\left(\frac{d\sigma}{dT}\right)_W = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{T}{E_\nu}\right)^2 - g_L g_R \frac{m_e T}{E_\nu^2} \right]$$

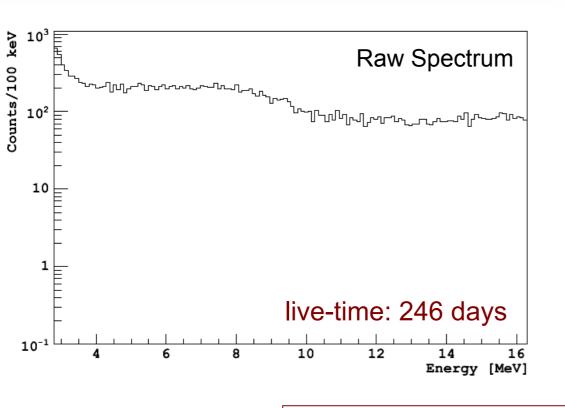
EM current affects cross section: spectral shape sensitive to µ_v sensitivity enhanced at low energies (c.s.≈ 1/T)

A fit is performed to the energy spectrum including contributions from $^{14}\text{C},$ leaving $\mu_{_{\rm V}}$ as free parameter of the fit


$(d\sigma)$		_ ,,2	$\pi \alpha_{em}^2$	$\int 1$	1 \
$\left(\overline{dT} \right)$	EM	$-\mu_{ u}$	$\overline{m_e^2}$	\sqrt{T}	$\overline{E_{ u}}$

Estimate	Method	10 ⁻¹¹ μ _B
SuperK	8B	<11
Montanino et al.	⁷ Be	<8.4
GEMMA	Reactor	<5.8
Borexino	⁷ Be	<5.4

⁸B neutrinos with the lowest threshold: 2.8 MeV



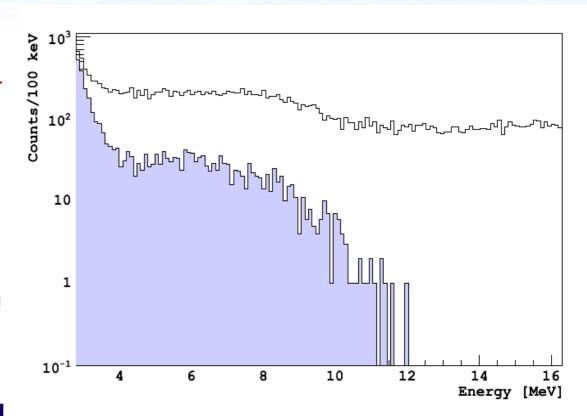
Expected ⁸B v rate in 100 tons of liquid scintillator above <u>2.8</u> MeV: **0.26±0.03 c/d/100 tons**

Background in the 2.8-16.3 MeV range

- ✓ Cosmic Muons
- ✓ External background
- ✓ High energy gamma's from neutron captures
- √ 208Tl and 214Bi from radon emanation from nylon vessel
- √ Cosmogenic isotopes
- ✓ ²¹⁴Bi and ²⁰⁸Tl from ²³⁸U and ²³²Th bulk contamination

Count-rate: 1500 c/d/100 ton

S/B ratio < 1/6000!!!

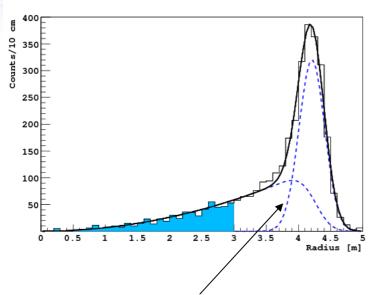

Muon and neutron cuts

Muon cut:

- All events detected by the outer detector are rejected
- Residual muon rate: <10-3 c/d

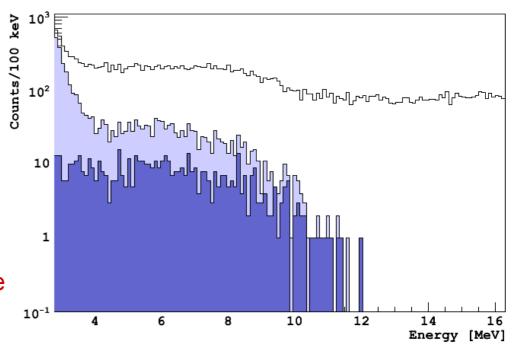
Neutron cut:

- 2 ms veto after each muon detected by the outer detector, in order to reject induced neutrons (mean capture time ~250 μ s)
- Residual neutron rate: ~10⁻⁴ c/d


Count-rate: 4.8 c/d/100 ton

Fiducial Volume Cut

(radius < 3 m, ~100 tons)

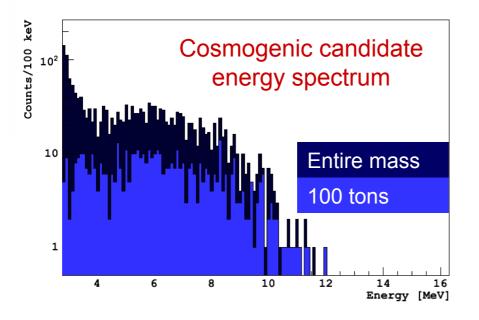


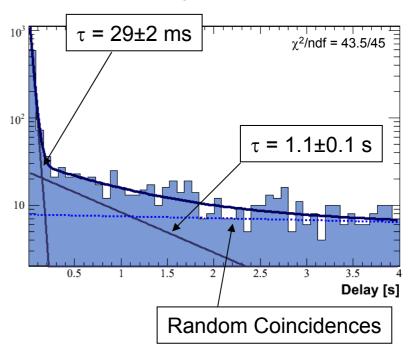
Surface contamination:

• ²²²Rn and ²²⁰Rn emanated from the nylon vessel

• Effective attenuation length: ~5 cm

• Residual contamination: ~10-4 c/d

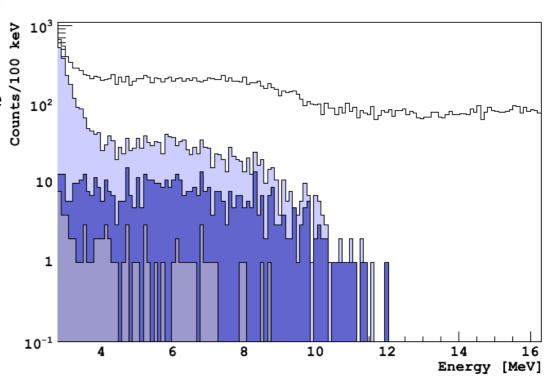

Count-rate: 2.3 c/d/100 ton



Muon induced radioactive nuclides

Isotopes	τ	Q	Decay	σ	E_{μ}
		[MeV]		$[\mu \text{barn}]$	[GeV]
Short-live	ed $(\tau < 2s)$				
$^{12}\mathrm{B}$	$0.03 \ s$	13.4	β^{-}	~ 4500	320
$^9{ m Li}$	$0.26 \mathrm{\ s}$	13.6	β^{-}	<2	190
$^8{ m Li}$	$1.21 \mathrm{\ s}$	16.0	β^{-}	5	320
$^8{ m He}$	$0.17 \mathrm{\ s}$	10.6	β^{-}	<2	190
$^6{ m He}$	$1.17 \ {\rm s}$	3.5	β^{-}	23	320
$^{9}\mathrm{C}$	$0.19 \ s$	16.5	β^+	5	190
⁸ B	$1.11 \mathrm{\ s}$	18.0	β^+	11	320

Event delay time after a μ



Cosmogenic cut

Cosmogenic cut:

- 5 s veto after each μ crossing the buffer
- Rejection efficiency cut: 99.7%
- Residual short-lived cosmogenic
- rate: **3x10**-3 **c/d**
- Dead-time: 23.4%
- Effective detector live-time: 188

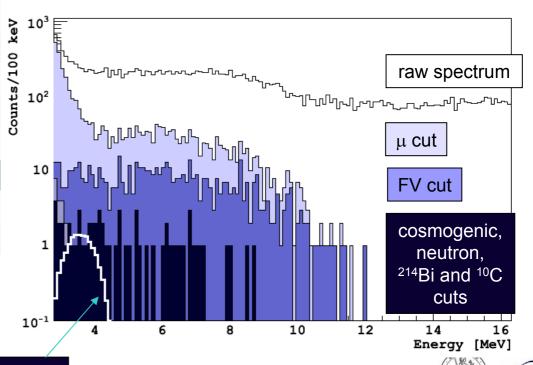
days

Count-rate: 0.4 c/d/100 ton

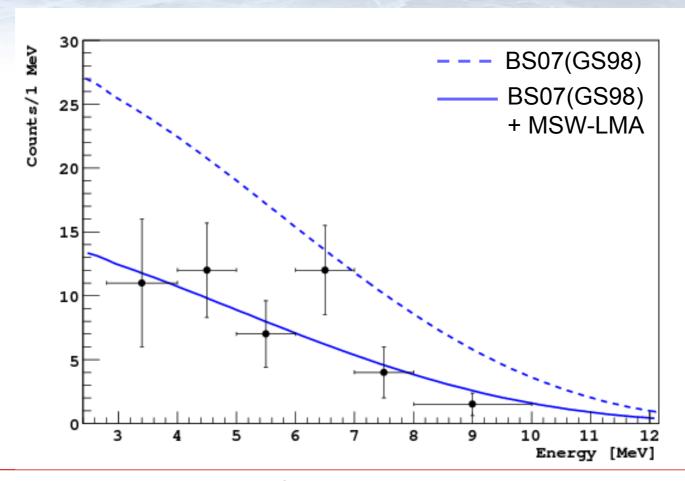
Summary of the Cuts and Systematic

Counts 0-16.3 MeV

42314


1135

1114

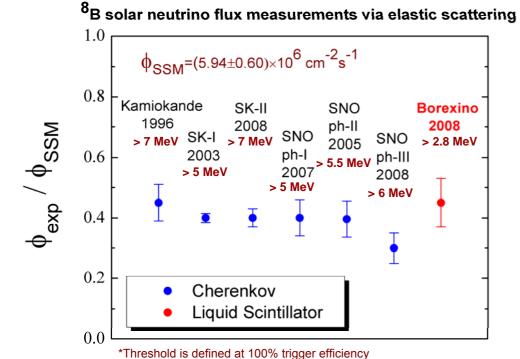

Cut	Counts 2.8-16.3 MeV	5.0
None	60449	
Muon cut	3363	
Neutron cut	3280	
FV cut	567	
Cosmogenic cut	71	
¹⁰ C removal	65	
²¹⁴ Bi removal	62	
Expected ²⁰⁸ TI	14 <u>+</u> 3	
Measured ⁸ B-v	48 <u>+</u> 8	
BS07(GS98) 8B-v	50 <u>+</u> 5	
BS07(AGS05) 8B-v	40 <u>+</u> 4	

^{*}MSW-LMA: $\Delta m^2 = 7.69 \times 10^{-5} \text{ eV}^2$, $\tan^2\theta = 0.45$

- √ Systematic errors:
- √ 6% from the determination of the fiducial mass
- ✓ 3% (2%) uncertainty in the ⁸B rate above 2.8 MeV (5.0 MeV) from the determination of the light yield (1%)

The ⁸B v spectrum

Neutrino oscillation is confirmed at 4.2 σ , including the theoretical uncertainty (10%) on the ⁸B flux from the Standard Solar Model



⁸B equivalent v flux

Equivalent unoscillated 8B neutrino flux, as derived from the electron scattering rate

	2.8-16.3 MeV	5.0-16.3 MeV
Rate [c/d/100 tons]	0.26±0.04±0.02	0.14±0.03± 0.01
$\Phi^{\rm ES}_{\rm exp}$ [10 ⁶ cm ⁻² s ⁻¹]	2.65±0.44±0.18	2.75±0.54±0.17
$\Phi^{ES}_{exp}/\Phi^{ES}_{th}$	0.96±0.19	1.02±0.23

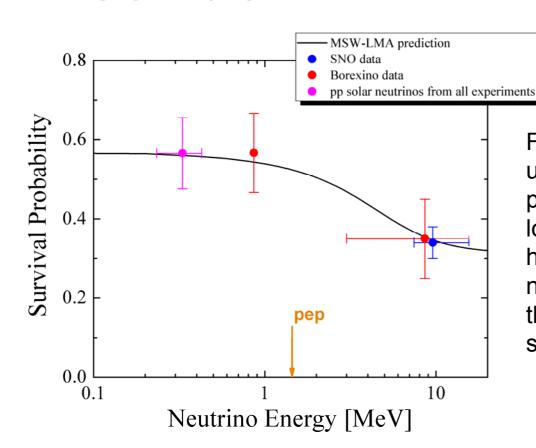
Good agreement with the SK-I and SNO D20 measurements (same threshold at 5 MeV)

	Threshold	Φ_{8B}^{ES}
	[MeV]	$[10^6 \text{ cm}^{-2} \text{ s}^{-1}]$
SuperKamiokaNDE I [8] (5.0	$2.35\pm0.02\pm0.08$
SuperKamiokaNDE II [9]	7.0	$2.38\pm0.05^{+0.16}_{-0.15}$
SNO D_2O [7]	5.0	$2.39^{+0.24}_{-0.23}^{+0.12}_{-0.12}$
SNO Salt Phase [6]	5.5	$2.35\pm0.22\pm0.15$
SNO Prop. Counter [10]	6.0	$1.77^{+0.24}_{-0.21}^{+0.09}_{-0.10}$
Borexino	5.0	$2.75 \pm 0.54 \pm 0.17$
Borexino	2.8	$2.65{\pm}0.44{\pm}0.18$

Davide Franco - Università di Milano & INFN

Electron Neutrino Survival Probability

P_{ee} is defined such that:


R: measured rate

E, and Te: neutrino and recoiled electron energies

 $T_0 = 2.8 \text{ MeV}$: energy threshold

 $E_0 = 3.0 \text{ MeV}$: minimum neutrino energy at T_0 N_a: number of target electrons σ_{ν} (x=e, μ - τ): elastic cross sections

$$R = \int_{T_e > T_0} dT_e \int_{E_\nu > E_0} dE_\nu \left(\overline{P}_{ee} \cdot \frac{d\sigma_e}{dT_e} (E_\nu, T_e) + (1 - \overline{P}_{ee}) \cdot \frac{d\sigma_{\mu\text{-}\tau}}{dT_e} (E_\nu, T_e) \right) N_e \cdot \frac{d\Phi_e}{dE_\nu} (E_\nu)$$

$$\overline{P}_{ee}(^{8}B) = 0.35 \pm 0.10 (8.6 \text{ MeV})$$

$$P_{\rm ee}(^7{\rm Be}) = 0.56 \pm 0.10 \ (0.862 \ {\rm MeV})$$

For the first time, we confirm at 1.8 σ , using data from a single detector, the presence of a transition between the low energy vacuum-driven and the high-energy matter-enhanced solar neutrino oscillations, in agreement with the prediction of the MSW-LMA solution for solar neutrinos

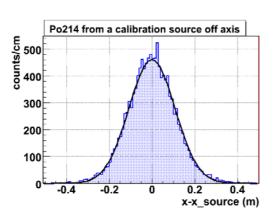
Calibrations

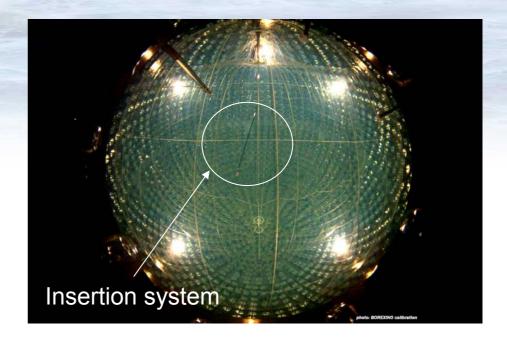
Goal: <5% 7Be measurement

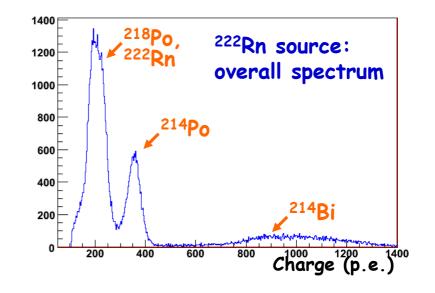
Detector response vs position:

✓100 Hz ¹⁴C+²²²Rn in scintillator in >100 positions

Quenching and energy scale:

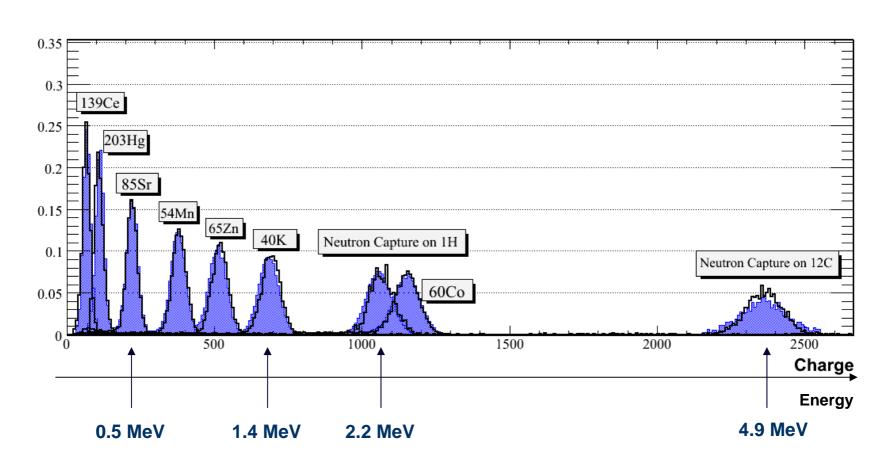

✓ Beta: ¹⁴C, ²²²Rn in scintillator


✓ Alpha: ²²²Rn in scintillator


√ Gamma: ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ²⁰³Hg, ⁶⁵Zn,

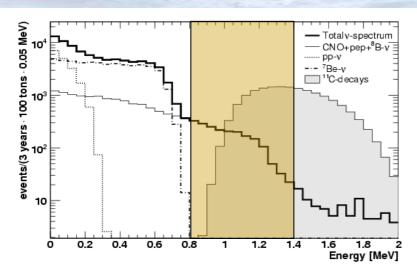
⁴⁰K, ⁸⁵Sr, ⁵⁴Mn

✓ Neutron: AmBe

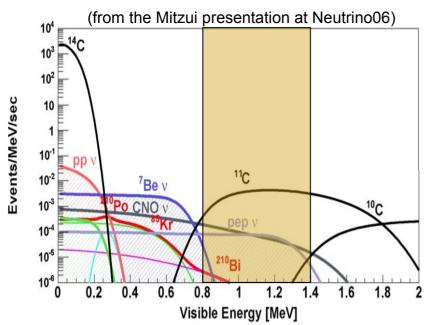


Calibrations: Monte Carlo vs Data

Gamma sources in the detector center



What next?

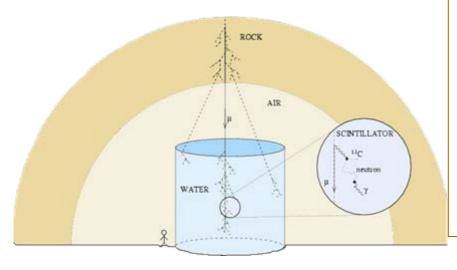

BOREXino

NA54 @ CERN: 100 and 190 GeV muon beams on a ¹²C target: ¹¹C represents 80% of all the muon-induced contaminants and more than 99% in the CNO pep-v energy window

Hagner et al., Astropart. Phys. 14, 33 (2000)

KamLAND

¹¹ C Rate			
(cts / day / 100 tons)			
	All energy	0.8 – 1.4 MeV	
KamLAND	107	55	
BOREXino	15	7.4	
SNO+	0.15	0.074	

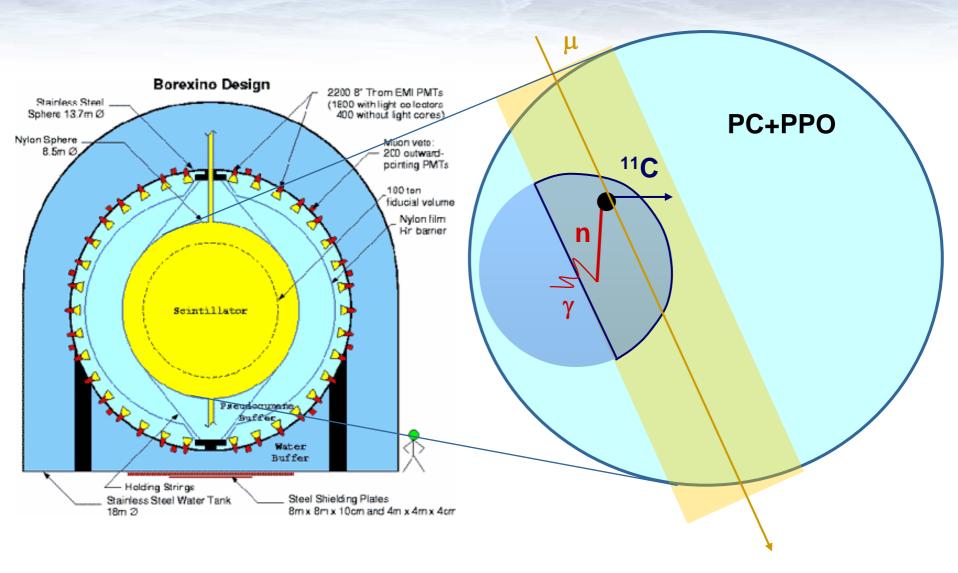


¹¹C production and decay

$$\mu$$
 (+ secondaries) + $^{12}C \rightarrow \mu$ (+ secondaries) + ^{11}C + n

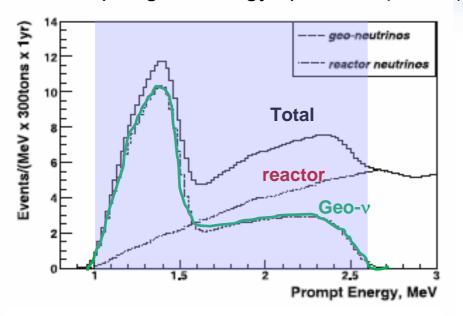
$$n + p \rightarrow d + \gamma$$

$$^{11}C \rightarrow ^{11}B + e^{+} + v_{e}$$


Coincidence among:

- cosmic muon:
 - rate at LNGS (3700 mwe): 1.16 hr⁻¹ m⁻²
 - average energy: 320 GeV
- gamma from neutron capture:
 - energy: 2.2 MeV
 - capture time: 250 μs
- positron from ¹¹C decay:
 - deposited energy between 1.022 and 1.982 MeV
 - mean life: 30 min

Large scintillator detector potential



Borexino potential on geoneutrinos

Prompt signal energy spectrum (model) • Detection technique: inverse β -decay

 Detection technique: inverse β-decay and delayed coincidence:

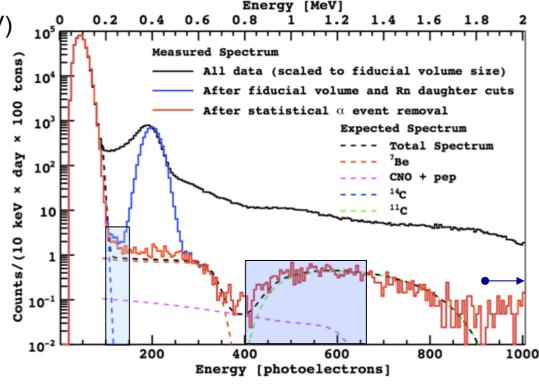
$$\overline{\nu}_e + p \longrightarrow e^+ + n$$
 $\Delta t \sim 250 \,\mu s$
 $n + p \longrightarrow d + \gamma (2.2 \,MeV)$

Energy range: 1-2.6 MeV

• Efficiency: 80%

Cosmogenic β-n background (⁸Li and ⁶He) identified and rejected event by event

Prediction:


- geoneutrino signal: 6.3 / year / 300 tons
- reactor antineutrinos (in the geo-v range): **5.7 / year / 300 tons** (Balata *et al.*, 2006, ref. model Mantovani *et al.*, 2004)

Summary of the future measurements

- ✓ pep and CNO v fluxes
 - ✓ software algorithm based on a three-fold coincidence analysis to subtract efficiently cosmogenic ¹¹C background
 - ✓ Muon track reconstruction
- ✓ ⁸B at low energy region (3-5 MeV)
- pp neutrinos
 - √ seasonal variations
 - √ ¹⁴C subtraction
- ✓ geoneutrinos
- √ ⁷Be with errors < 5%
 </p>
 - ✓ Systematic reduction
 - ✓ Calibrations
 - ✓ Purifications planned for 2010

Conclusion

- Borexino opened the study of the solar neutrinos in real time below the barrier of natural radioactivity (5 MeV)
 - √ Two measurements reported for ⁷Be neutrinos
 - ✓ Best limits for pp and CNO neutrinos, combining information from SNO and radiochemical experiments
 - ✓ Opportunities to tackle pep and CNO neutrinos in direct measurement
 - ✓ First observation of ⁸B neutrino spectrum below 5 MeV
- Borexino will run comprehensive program to study antineutrinos
 - ✓ geoneutrino analysis is coming soon!
- Borexino is a powerful observatory for neutrinos from Supernovae explosions within few tens of kpc
- ✓ Best limit on neutrino magnetic moment. Improve by dedicated measurement with ⁵¹Cr neutrino source
- ...and do not forget the technological success of the high-radiopurity scintillator!

