Improved measurement of the ⁸B solar neutrino rate with 1.5 kton year of Borexino exposure

Davide Franco on behalf of the Borexino Collaboration

RECENT DEVELOPMENTS IN NEUTRINO PHYSICS AND ASTROPHYSIC 4-7 September 2017 - LNGS-GSSI

Real time neutrino measurements

Why is it important to lower the threshold?

Electron neutrino survival probability from 8B

All experiments **fully compatible** with the predicted "**up-turn**"

However, Bx and SNO results seem to prefer a "**down-turn**"

Increasing the statistics

Data Set:

- Jan 2008 Dec 2016
- Purification period removed
- High ²²²Rn activity (>20cpd) periods removed
- Total livetime: 2062.38 days

2010⁸B Paper Data Set:

- Jul 2007 Aug 2009
- Total Livetime: 488 days

Extending the fiducial mass (100 t) to the entire active mass (~300 t)

Total exposure: **1.5 kt year** (**11.5-fold** increase)

Instabilities

The vessel shape is **not spherical** and has changed during datataking.

Weekly dynamic reconstruction of the vessel radial profile with background events

Cross check with CCD cameras => 1% precision

Working channels and PMT gains variation along the time => impact on energy and spatial reconstructions

See Borexino Collaboration, Phys. Rev. D89 (2014) 112007

Monte Carlo

All effects included in Monte Carlo simulations:

Data are reproduced on a weekly basis _

See Borexino Collaboration, arXiv: 1704.02291 (2017)

difference 2.2 MeV gammas 10⁻² ¹⁴C light pulse Data MC 10 « ٠ 10-4 . data-MC 3. ٠ ٠ 10-5 Relative . 10⁻⁶ 10-7 300 100 200 400 500 -50 distance from the vessel (m) ns 0.5 0.35 Data **Calibration sources** MC 0.3 139Ce 0.25 203Hg 0.2 85Sr 0.15 54Mn 65Zn 40K Neutron Capture on 1H 0.1 Neutron Capture on 12C 60Co 0.05 0₀

1000

500

1500

2000

2500

Charge

Response Map

Range of Interest [1650, 8500] npe

Uncertainty from the MC response map: 1.6% Uncertainty on the LY at the detector center: 1%

Total uncertainty on the energy scale: 1.9%

Scintillator Mass and the Leak

Scintillator mass: estimated from a toy MC using the vessel shape

Mass variation due to the leak started in 2009

Average mass = **266 ± 5.3 †**

Excess of events at the top, maybe due to the leak

Not observed > 5 MeV

A z-cut at 2.5 m is applied in the low energy region (E < 5 MeV) analysis

Cut acceptance: ~86%

Background

Cosmogenic Background

χ² / ndf

166.3 / 150

Time [s]

Cosmogenic Isotopes

Isotopes	au	\overline{Q}	Decay	Expected Rate	Fraction	Expected Rate $> 3 MeV$	Measured Rate $> 3 \ MeV$	
		[MeV]	_	[cpd/100 t]	$> 3 \ MeV$	[cpd/100 t]	[cpd/100 t]	
¹² B	0.03 s	13.4	β^{-}	1.41 ± 0.04	0.886	$1.25{\pm}~0.03$	1.48 ± 0.06	
⁸ He	0.17 s	10.6	β^{-}	0.026 ± 0.012	0.898			(Exylate
⁹ C	0.19 s	16.5	β^+	0.096 ± 0.031	0.965	$(1.8 \pm 0.3) \times 10^{-1}$	$(1.7 \pm 0.5) imes 10^{-1}$	6.5 S VEIO
⁹ Li	0.26 s	13.6	eta^-	0.071 ± 0.005	0.932			2
⁸ B	1.11 s	18.0	β^+	0.273 ± 0.062	0.938			ТГС
⁶ He	1.17 s	3.5	eta^-	NA	0.009	$(6.0 \pm 0.8) imes 10^{-1}$	$(5.1 \pm 0.7) imes 10^{-1}$	IFC
⁸ Li	1.21 s	16.0	β^-	0.40 ± 0.07	0.875			
¹⁰ C	27.8 s	3.6	β^+	0.54 ± 0.04	0.012	$(6.5\pm0.5) imes10^{-3}$	$(6.6\pm1.8) imes10^{-3}$	
¹¹ Be	19.9 s	11.5	β^{-}	0.035 ± 0.006	0.902	$(3.2 \pm 0.5) imes 10^{-2}$	$(3.6\pm3.5)\times10^{-2}$	

Prob 0.1723 $^{12}\mathbf{B}$ 7196 ± 150.5 Cosmogenics data 10^{4} G_1 Accidental data 50.63 ± 12.99 G₂' Bkg 67.82 ± 3.28 12.95 ± 0.51 Fit function 10^{3} Extrapolation of the cosmogenic ¹²B contribution after the 6.5 s time ⁸B+⁶He+⁸Li window, with a fit of the time profile of ⁸He+⁹C+⁹Li 10^{2} Background events following a muon 10

 10^{-1}

Cosmogenic Background

Cosmogenic Isotopes

Isotopes	au	Q	Decay	Expected Rate	Fraction	Expected Rate $> 3 MeV$	Measured Rate $> 3 \ MeV$	
		[MeV]		[cpd/100 t]	$> 3 \ MeV$	[cpd/100 t]	[cpd/100 t]	_
¹² B	0.03 s	13.4	eta^-	1.41 ± 0.04	0.886	$1.25{\pm}0.03$	1.48 ± 0.06	
⁸ He	0.17 s	10.6	β^{-}	0.026 ± 0.012	0.898			6.5 syste
°C	0.19 s	16.5	β^+	0.096 ± 0.031	0.965	$(1.8 \pm 0.3) \times 10^{-1}$	$(1.7 \pm 0.5) imes 10^{-1}$	0.3 S VEIO
⁹ Li	0.26 s	13.6	eta^-	0.071 ± 0.005	0.932			
⁸ B	1.11 s	18.0	β^+	0.273 ± 0.062	0.938			ТГС
⁶ He	1.17 s	3.5	eta^-	NA	0.009	$(6.0 \pm 0.8) imes 10^{-1}$	$(5.1 \pm 0.7) imes 10^{-1}$	IFC
⁸ Li	1.21 s	16.0	β^-	0.40 ± 0.07	0.875			
¹⁰ C	27.8 s	3.6	β^+	0.54 ± 0.04	0.012	$(6.5\pm0.5) imes10^{-3}$	$(6.6\pm1.8) imes10^{-3}$	
¹¹ Be	19.9 s	11.5	β^{-}	0.035 ± 0.006	0.902	$(3.2 \pm 0.5) imes 10^{-2}$	$(3.6\pm3.5)\times10^{-2}$	

Data Selection

Selection cuts:

- Neutron cut: 2 ms veto after each muon
- Cosmogenic cut: 6.5 s veto after muon crossing the scintillator
- ¹⁰C cut: 0.8 m radius sphere x 120 s veto around each neutron
- Run stop/start cut: 6.5 s veto at the beginning of each run
- Fast coincidences cut: no ²¹⁴Bi-²¹⁴Po
- + Random coincidence cut: no events closer than 5 s (after all previous cuts):
 - ~6,000 candidates with a rate of 4 cpd
 - Probability for random coincidences: ~2x10⁻⁴
 - Expected accidentals: 1.4 events
 - Identified: 18 events

Deadtime evaluated at with toy-MC, mixing fake events with muons and neutrons from data

Selection cuts are applied on the simulated sample

Deadtime evaluated in 27.6%

LE and HE Ranges

Splitting the sample at 2950 npe (> 5 MeV): no natural radioactivity expected above this threshold

Mean	neutrino energies:
LE:	7.9 MeV
HE:	9.9 MeV
LE+HE:	8.7 MeV

Acceptance in electron recoil energy

Expected (unoscillated) 8B neutrino spectrum

LE and HE Ranges

Residual tagged background rates after selection cuts

Background	LE rate	HE rate		
	$[10^{-4} \text{ cpd}/100 \text{ t}]$	$[10^{-4} \text{ cpd}/100 \text{ t}]$		
Fast cosmogenics	$13.6{\pm}0.6$	$10.4{\pm}0.4$		
Muons	$1.2{\pm}0.1$	$3.8{\pm}0.3$		
Neutrons	$0.72{\pm}0.02$	0		
^{10}C	$9.5{\pm}14.1$	0		
¹¹ Be	$0^{+36.3}_{-0.0}$	$0^{+54.9}_{-0.0}$		
$^{214}\mathrm{Bi}$	$2.2{\pm}1.0$	0		
Total	$27.2\substack{+38.9 \\ -14.1}$	$14.2^{+54.9}_{-0.5}$		
Untagged bg: discussed later				

Expected additional untagged backgrounds:

LE range

- ¹¹Be
- ²⁰⁸TI
- Surface events

The External Bg in the HE Range

	SSS (45 t)			PMT Glass $(1.77 t)$		
	$^{238}\mathrm{U}$	$^{235}\mathrm{U}$	$^{232}\mathrm{Th}$	$^{238}\mathrm{U}$	$^{235}\mathrm{U}$	$^{232}\mathrm{Th}$
Concentration [g/g] [38]	$3.7 10^{-10}$	$2.7 10^{-12}$	$2.8 10^{-9}$	$6.6 10^{-8}$	$4.8 10^{-10}$	$3.2 10^{-8}$
(α, n) rate $[n/decay]$ [41]	$5.0 \ 10^{-7}$	$3.8 10^{-7}$	$1.9 \ 10^{-6}$	$1.6 \ 10^{-5}$	$1.9 10^{-5}$	$1.8 10^{-5}$
(α, n) neutron flux $[year^{-1}]$	$3.3 10^3$	$1.2 10^2$	$3.1 10^4$	$7.3 10^5$	$4.1 10^4$	$1.3 10^5$
Spontaneous fission rate $[n/(g s)][42]$	$1.36 \ 10^{-2}$	$3.0 10^{-4}$	$< 1.32 \ 10^{-7}$	$1.36 \ 10^{-2}$	$3.0 10^{-4}$	$< 1.32 \ 10^{-7}$
Spontaneous fission neutron flux $[year^{-1}]$	$7.1 10^4$	O(<1)	O(< 1)	$5.0 \ 10^2$	O(<1)	O(<1)

Two dominant neutron sources: SSS and PMT glasses

Neutron fluxes:

- (a,n) evaluated with TALYS
- Fission rate from literature (Watt equation)

From E. Shores, NIM B 179, 78 (2001): comparison between TALYS, SOURCES-4C, and DATA provides agreements within **100% uncertainty**

Gammas from Neutron Captures

Full neutron propagation with the Borexino Monte Carlo package

Expected 148 (151) neutron-induced gammas in the LE (HE) range, in the whole statistic

Radial Dependence on Energy

Weak radial dependence on neutron capture position and kinetic energy of gammas

Negligible radial dependence on neutrino energy distortions due to oscillations

Radial Fit of the HE Sample

Internal ²⁰⁸Tl

Estimated by looking at the $^{212}\text{Bi-}^{212}\text{Po}$ fast coincidence (τ = 431 ns), within 3 m radius

Radial shape very similar to the neutrino one but **not identical**: if 2.6 MeV gammas, for events close to the border, escape the scintillator, TI208 event reconstructed energy is out of the range

The obtained rate, $1.8\pm0.3\times10^{-2}$ cpd/100 t above 1650 npe, is **5** times lower than in the previous analysis thanks to the purification campaign

The internal 208Tl component is constrained with a **penalty** factor in the radial fit

Surface Events

Number of events 10 than surface events Simulated surface ²¹²Bi E Surface events can not explain the excess 10-1 Simulated bulk ²¹²Bi ²¹²Bi and ²⁰⁸Tl have the same radial 10^{-2} 0 0.52 2.5 3 3.5 4.5 1.5 5 distributions: we can extract the distribution Radius [m] from the data

The "surface" component can not be intrinsic to the nylon vessel: we observe the full ²¹²Po alpha peak for these events! (no energy degradation as expected for an alpha escaping the vessel)

It must be **emanated** and **diffused** from the vessel and more internal in the scintillator bulk

D. Franco - APC

²²⁰Rn emanation and diffusion

From ²¹²Bi to ²⁰⁸TI radial distribution

Cosmogenic ¹¹Be background

4¹¹Be rate measurements before this analysis:

	Muon average energy	Borexino rate at 280 GeV with E > 3 MeV [cpd / 100 ton]
NA54 beam experiment (2000)	100, 190 GeV	<10 ⁻² (68% CL)
KamLAND (2009)	260 GeV	(3.2±0.5) 10 ⁻²
Bx 8B paper (2010)	280 GeV	(3.6±3.5) 10 ⁻²
Bx cosmogenic paper (2013)	280 GeV	<2 x10 ⁻¹ (99.73% CL)

From Bx cosmogenic paper

In the previous work, we used the extrapolation from KamLAND, which represents 10-15% of the neutrino rate

Currently we have a factor ~3 more statistics than in the previous Bx measurements.

New fit with a multi-variate approach, looking at energy and time distributions

Cosmogenic ¹¹Be background

Methodology

Cosmogenic sample:

- radial cut (r < 3.5)
- deltaT from the muon: > 10 s and < 150 s
- distance from the muon track: < 2 m
- charge cut: > 3000 npe (>6 MeV)
- muon charge: >10000 npe

Accidental sample:

- r < 3.5 m
- Distance from the muon track: > 2 m
- 150 s < deltaT < 300 s
- Charge cut > 3000 npe
- Muon charge > 10000 npe

¹¹Be pdf from MC

The fit prefers negative number of ¹¹Be => added a boundary $N \ge 0$

¹¹Be rate = $0^{+9.1}$ ₋₀ x 10⁻³ cpd / 100 t (E > 1650 npe)

Radial Fit of the LE Sample

600 227 t / 0.10 m log-L fit to account for empty bins Data Equivalent χ^2 /ndf = 31.3 / 36 Model 500 ⁸B solar-v Neutron captures Emanation rate ~0.47 cpd / 100 t ²⁰⁸TI: bulk Excluding the emanation component: $\chi^2/ndf =$ 400 ²⁰⁸TI: emanation counts / 1494 d / ²⁰⁸TI: surface 91.6/36 300 Bulk ²⁰⁸Tl vs ⁸B-v correlation coefficient = -0.299200 Number of gammas: 351±31 (predicted ~150) 10^{3} counts / 1494 d / 227 t / 0.10 m Data 1.5 2 2.5 3.5 4.5 5 1 3 4 Model Radius [m] ⁸B solar-v **Neutron captures** 10² ²⁰⁸TI: bulk ²⁰⁸TI: emanation ²⁰⁸TI: surface Component LE rate HE rate [cpd/227.8 t] [cpd/266.0 t] 10 ⁸B neutrinos 0.310 ± 0.029 0.235 ± 0.021 $0.224 {\pm} 0.078$ $0.239 {\pm} 0.022$ External ²⁰⁸Tl bulk 0.042 ± 0.008 208 Tl emanation $0.469 {\pm} 0.063$ 208 Tl surface 1.090 ± 0.046 10⁻¹ 3.5 4.5 0.5 0 1 1.5 2 2.5 3 4 5 Radius [m]

5

Systematic Errors and Results

	LE	HE	LE+HE
Source	σ	σ	σ
Active mass	2.0	2.0	2.0
Energy scale	0.5	4.9	1.7
z-cut	0.7	0.0	0.4
Live time	0.05	0.05	0.05
Scintillator density	0.5	0.5	0.5
Total [%]	2.2	5.3	2.7

In addition we have tested:

- pdf radial distortion: ±3%
- Emanation vessel shift: ±1%
- **Response functions** for the emanation component generated at 6 cm from the vessel (instead of 1 cm)
- Binning dependence

None of these potential systematic sources affected the measured 8B rate outside 1 statistical sigma

$$\begin{aligned} R_{LE} &= & 0.133^{+0.013}_{-0.013} \, (stat) \, {}^{+0.003}_{-0.003} \, (syst) \, \, \mathrm{cpd}/100 \, \mathrm{t}, \\ R_{HE} &= & 0.087^{+0.08}_{-0.010} \, (stat) \, {}^{+0.005}_{-0.005} \, (syst) \, \, \mathrm{cpd}/100 \, \mathrm{t}, \\ R_{LE+HE} &= & 0.220^{+0.015}_{-0.016} \, (stat) \, {}^{+0.006}_{-0.006} \, (syst) \, \, \mathrm{cpd}/100 \, \mathrm{t}. \end{aligned}$$

Expected rate in the LE+HE range: 0.211±0.025 cpd/100 t Assuming B16(G98) SSM and MSW+LMA

Solar Neutrino Flux and Survival Probability

Equivalent unoscillated flux

SuperKamiokande	2.345 ±0.014 ±0.036 x 10 ⁶ cm ⁻² s ⁻¹
BX 2010	2.4 ±0.4 x10 ⁶ cm ⁻² s ⁻¹
This measurement	2.55 ±0.18 ±0.07 x 10 ⁶ cm ⁻² s ⁻¹

Low Metallicity Model

- Improved measurement of the ⁸B rate with **11.5 times** the previous **exposure**
- New analysis approach with full active volume and radial analysis
- Lowest energy threshold among real time experiments
- Identified a **new source of background** from neutron captures on C and on Fe
- New estimation of the cosmogenic ¹¹Be rate
- ⁸B neutrino rate error has been reduced by more than a factor 2 from the previous measurement
- Slight preference for the **high-Z model**

Future

Can we improve the measurement?

- Non-significant improvements with additional 1-2 years of statistics
- Lowering down the threshold to 2 MeV: need an effort on understanding the external background from ²¹⁴Bi and ²⁰⁸TI
- Science-fiction: active scintillator in the buffer (and vessel removal)
 - would allow for identification and rejection of external background
 - no-more dependences on the vessel shape
 - No-radon emanation from the vessel