G4LEAntiProtonInelastic Class Reference

#include <G4LEAntiProtonInelastic.hh>

Inheritance diagram for G4LEAntiProtonInelastic:

G4InelasticInteraction G4HadronicInteraction

Public Member Functions

 G4LEAntiProtonInelastic (const G4String &name="G4LEAntiProtonInelastic")
 ~G4LEAntiProtonInelastic ()
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription (std::ostream &outFile) const

Detailed Description

Definition at line 45 of file G4LEAntiProtonInelastic.hh.


Constructor & Destructor Documentation

G4LEAntiProtonInelastic::G4LEAntiProtonInelastic ( const G4String name = "G4LEAntiProtonInelastic"  ) 

Definition at line 42 of file G4LEAntiProtonInelastic.cc.

References G4cout, G4endl, G4HadronicInteraction::SetMaxEnergy(), and G4HadronicInteraction::SetMinEnergy().

00043  :G4InelasticInteraction(name)
00044 {
00045   SetMinEnergy(0.0);
00046   SetMaxEnergy(25.*GeV);
00047   G4cout << "WARNING: model G4LEAntiProtonInelastic is being deprecated and will\n"
00048          << "disappear in Geant4 version 10.0"  << G4endl;
00049 }

G4LEAntiProtonInelastic::~G4LEAntiProtonInelastic (  )  [inline]

Definition at line 51 of file G4LEAntiProtonInelastic.hh.

00051 {}


Member Function Documentation

G4HadFinalState * G4LEAntiProtonInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
) [virtual]

Implements G4HadronicInteraction.

Definition at line 67 of file G4LEAntiProtonInelastic.cc.

References G4InelasticInteraction::CalculateMomenta(), G4Nucleus::Cinema(), G4InelasticInteraction::DoIsotopeCounting(), G4Nucleus::EvaporationEffects(), G4cout, G4endl, G4UniformRand, G4HadProjectile::Get4Momentum(), G4HadProjectile::GetDefinition(), G4DynamicParticle::GetDefinition(), G4ReactionProduct::GetKineticEnergy(), G4HadProjectile::GetKineticEnergy(), G4HadProjectile::GetMaterial(), G4ReactionProduct::GetMomentum(), G4Material::GetName(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGMass(), G4HadProjectile::GetTotalMomentum(), G4FastVector< Type, N >::Initialize(), isAlive, G4InelasticInteraction::isotopeProduction, G4InuclParticleNames::pp, G4Nucleus::ReturnTargetParticle(), G4HadFinalState::SetEnergyChange(), G4ReactionProduct::SetKineticEnergy(), G4ReactionProduct::SetMomentum(), G4HadFinalState::SetMomentumChange(), G4ReactionProduct::SetSide(), G4HadFinalState::SetStatusChange(), G4InelasticInteraction::SetUpChange(), G4HadronicInteraction::theParticleChange, and G4HadronicInteraction::verboseLevel.

00069 { 
00070   const G4HadProjectile* originalIncident = &aTrack;
00071 
00072   if (originalIncident->GetKineticEnergy() <= 0.1*MeV) {
00073     theParticleChange.SetStatusChange(isAlive);
00074     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00075     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
00076     return &theParticleChange;
00077   }
00078 
00079   // create the target particle
00080 
00081   G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
00082     
00083   if (verboseLevel > 1) {
00084     const G4Material *targetMaterial = aTrack.GetMaterial();
00085     G4cout << "G4LEAntiProtonInelastic::ApplyYourself called" << G4endl;
00086     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
00087     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00088     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00089            << G4endl;
00090   }
00091 
00092   // Fermi motion and evaporation
00093   // As of Geant3, the Fermi energy calculation had not been Done
00094 
00095   G4double ek = originalIncident->GetKineticEnergy()/MeV;
00096   G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00097   G4ReactionProduct modifiedOriginal;
00098   modifiedOriginal = *originalIncident;
00099     
00100   G4double tkin = targetNucleus.Cinema( ek );
00101   ek += tkin;
00102   modifiedOriginal.SetKineticEnergy( ek*MeV );
00103   G4double et = ek + amas;
00104   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00105   G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
00106   if (pp > 0.0) {
00107     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00108     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00109   }
00110 
00111   // calculate black track energies
00112   tkin = targetNucleus.EvaporationEffects( ek );
00113   ek -= tkin;
00114   modifiedOriginal.SetKineticEnergy( ek*MeV );
00115   et = ek + amas;
00116   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00117   pp = modifiedOriginal.GetMomentum().mag()/MeV;
00118   if (pp > 0.0) {
00119     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00120     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00121   }
00122   G4ReactionProduct currentParticle = modifiedOriginal;
00123   G4ReactionProduct targetParticle;
00124   targetParticle = *originalTarget;
00125   currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
00126   targetParticle.SetSide( -1 );  // target always goes in backward hemisphere
00127   G4bool incidentHasChanged = false;
00128   G4bool targetHasChanged = false;
00129   G4bool quasiElastic = false;
00130   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00131   G4int vecLen = 0;
00132   vec.Initialize( 0 );
00133     
00134   const G4double cutOff = 0.1;
00135   const G4double anni = std::min( 1.3*originalIncident->GetTotalMomentum()/GeV, 0.4 );
00136     
00137   if ((currentParticle.GetKineticEnergy()/MeV > cutOff) ||
00138       (G4UniformRand() > anni) )
00139     Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
00140             incidentHasChanged, targetHasChanged, quasiElastic);
00141   else
00142     quasiElastic = true;
00143     
00144   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00145                    modifiedOriginal, targetNucleus, currentParticle,
00146                    targetParticle, incidentHasChanged, targetHasChanged,
00147                    quasiElastic);
00148     
00149   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00150 
00151   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00152 
00153   delete originalTarget;
00154   return &theParticleChange;
00155 }

void G4LEAntiProtonInelastic::ModelDescription ( std::ostream &  outFile  )  const [virtual]

Reimplemented from G4HadronicInteraction.

Definition at line 52 of file G4LEAntiProtonInelastic.cc.

00053 {
00054   outFile << "G4LEAntiProtonInelastic is one of the Low Energy Parameterized\n"
00055           << "(LEP) models used to implement inelastic anti-proton scattering\n"
00056           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00057           << "code of H. Fesefeldt.  It divides the initial collision\n"
00058           << "products into backward- and forward-going clusters which are\n"
00059           << "then decayed into final state hadrons.  The model does not\n"
00060           << "conserve energy on an event-by-event basis.  It may be\n"
00061           << "applied to anti-protons with initial energies between 0 and 25\n"
00062           << "GeV.\n";
00063 }


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:52:22 2013 for Geant4 by  doxygen 1.4.7