G4UrbanMscModel93.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 //
00027 // $Id: G4UrbanMscModel93.cc 69120 2013-04-18 13:41:13Z vnivanch $
00028 //
00029 // -------------------------------------------------------------------
00030 //   
00031 // GEANT4 Class file
00032 //    
00033 //
00034 // File name:   G4UrbanMscModel93
00035 //
00036 // Author:      Laszlo Urban
00037 //
00038 // Creation date: 06.03.2008
00039 //
00040 // Modifications:
00041 //
00042 // 06-03-2008 starting point : G4UrbanMscModel2 = G4UrbanMscModel 9.1 ref 02
00043 //
00044 // 13-03-08  Bug in SampleScattering (which caused lateral asymmetry) fixed
00045 //           (L.Urban)
00046 //
00047 // 14-03-08  Simplification of step limitation in ComputeTruePathLengthLimit,
00048 //           + tlimitmin is the same for UseDistancetoBoundary and
00049 //           UseSafety (L.Urban)           
00050 //
00051 // 16-03-08  Reorganization of SampleCosineTheta + new method SimpleScattering
00052 //           SimpleScattering is used if the relative energy loss is too big
00053 //           or theta0 is too big (see data members rellossmax, theta0max)
00054 //           (L.Urban)          
00055 //
00056 // 17-03-08  tuning of the correction factor in ComputeTheta0 (L.Urban)
00057 //
00058 // 19-03-08  exponent c of the 'tail' model function is not equal to 2 any more,
00059 //           value of c has been extracted from some e- scattering data (L.Urban) 
00060 //
00061 // 24-03-08  Step limitation in ComputeTruePathLengthLimit has been
00062 //           simplified further + some data members have been removed (L.Urban)
00063 //
00064 // 24-07-08  central part of scattering angle (theta0) has been tuned
00065 //           tail of the scattering angle distribution has been tuned
00066 //           using some e- and proton scattering data
00067 //
00068 // 05-08-08  bugfix in ComputeTruePathLengthLimit (L.Urban)
00069 //
00070 // 09-10-08  theta0 and tail have been retuned using some e-,mu,proton
00071 //           scattering data (L.Urban)
00072 //           + single scattering without path length correction for
00073 //           small steps (t < tlimitmin, for UseDistanceToBoundary only)
00074 //
00075 // 15-10-08  Moliere-Bethe screening in the single scattering part(L.Urban)          
00076 //
00077 // 17-10-08  stepping similar to that in model (9.1) for UseSafety case
00078 //           for e+/e- in order to speed up the code for calorimeters
00079 //
00080 // 23-10-08  bugfix in the screeningparameter of the single scattering part,
00081 //           some technical change in order to speed up the code (UpdateCache)
00082 //
00083 // 27-10-08  bugfix in ComputeTruePathLengthLimit (affects UseDistanceToBoundary
00084 //           stepping type only) (L.Urban)          
00085 //
00086 // 28-10-09  V.Ivanchenko moved G4UrbanMscModel2 to G4UrbanMscModel93, 
00087 //           now it is a frozen version of the Urban model corresponding 
00088 //           to g4 9.3
00089 
00090 // Class Description:
00091 //
00092 // Implementation of the model of multiple scattering based on
00093 // H.W.Lewis Phys Rev 78 (1950) 526 and others
00094 
00095 // -------------------------------------------------------------------
00096 // In its present form the model can be  used for simulation 
00097 //   of the e-/e+, muon and charged hadron multiple scattering
00098 //
00099 
00100 
00101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00103 
00104 #include "G4UrbanMscModel93.hh"
00105 #include "G4PhysicalConstants.hh"
00106 #include "G4SystemOfUnits.hh"
00107 #include "Randomize.hh"
00108 #include "G4Electron.hh"
00109 #include "G4LossTableManager.hh"
00110 #include "G4ParticleChangeForMSC.hh"
00111 
00112 #include "G4Poisson.hh"
00113 #include "globals.hh"
00114 
00115 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00116 
00117 using namespace std;
00118 
00119 G4UrbanMscModel93::G4UrbanMscModel93(const G4String& nam)
00120   : G4VMscModel(nam)
00121 {
00122   masslimite    = 0.6*MeV;
00123   lambdalimit   = 1.*mm;
00124   fr            = 0.02;
00125   taubig        = 8.0;
00126   tausmall      = 1.e-16;
00127   taulim        = 1.e-6;
00128   currentTau    = taulim;
00129   tlimitminfix  = 1.e-6*mm;            
00130   stepmin       = tlimitminfix;
00131   smallstep     = 1.e10;
00132   currentRange  = 0. ;
00133   rangeinit     = 0.;
00134   tlimit        = 1.e10*mm;
00135   tlimitmin     = 10.*tlimitminfix;            
00136   tgeom         = 1.e50*mm;
00137   geombig       = 1.e50*mm;
00138   geommin       = 1.e-3*mm;
00139   geomlimit     = geombig;
00140   presafety     = 0.*mm;
00141                           
00142   y             = 0.;
00143 
00144   Zold          = 0.;
00145   Zeff          = 1.;
00146   Z2            = 1.;                
00147   Z23           = 1.;                    
00148   lnZ           = 0.;
00149   coeffth1      = 0.;
00150   coeffth2      = 0.;
00151   coeffc1       = 0.;
00152   coeffc2       = 0.;
00153   scr1ini       = fine_structure_const*fine_structure_const*
00154                   electron_mass_c2*electron_mass_c2/(0.885*0.885*4.*pi);
00155   scr2ini       = 3.76*fine_structure_const*fine_structure_const;
00156   scr1          = 0.;
00157   scr2          = 0.;
00158 
00159   theta0max     = pi/6.;
00160   rellossmax    = 0.50;
00161   third         = 1./3.;
00162   particle      = 0;
00163   theManager    = G4LossTableManager::Instance(); 
00164   firstStep     = true; 
00165   inside        = false;  
00166   insideskin    = false;
00167 
00168   numlim        = 0.01;
00169   xsi           = 3.;
00170   ea            = exp(-xsi);
00171   eaa           = 1.-ea ;
00172 
00173   skindepth = skin*stepmin;
00174 
00175   mass = proton_mass_c2;
00176   charge = ChargeSquare = 1.0;
00177   currentKinEnergy = currentRadLength = lambda0 = lambdaeff = tPathLength 
00178     = zPathLength = par1 = par2 = par3 = 0;
00179 
00180   currentMaterialIndex = -1;
00181   fParticleChange = 0;
00182   couple = 0;
00183   SetSampleZ(false);
00184 }
00185 
00186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00187 
00188 G4UrbanMscModel93::~G4UrbanMscModel93()
00189 {}
00190 
00191 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00192 
00193 void G4UrbanMscModel93::Initialise(const G4ParticleDefinition* p,
00194                                    const G4DataVector&)
00195 {
00196   skindepth = skin*stepmin;
00197 
00198   // set values of some data members
00199   SetParticle(p);
00200 
00201   if(p->GetPDGMass() > MeV) {
00202     G4cout << "### WARNING: G4UrbanMscModel93 model is used for " 
00203            << p->GetParticleName() << " !!! " << G4endl;
00204     G4cout << "###          This model should be used only for e+-" 
00205            << G4endl;
00206   }
00207 
00208   fParticleChange = GetParticleChangeForMSC(p);
00209 }
00210 
00211 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00212 
00213 G4double G4UrbanMscModel93::ComputeCrossSectionPerAtom( 
00214                              const G4ParticleDefinition* part,
00215                                    G4double KineticEnergy,
00216                                    G4double AtomicNumber,G4double,
00217                                    G4double, G4double)
00218 {
00219   static const G4double sigmafactor = 
00220     twopi*classic_electr_radius*classic_electr_radius;
00221   static const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2*
00222                             Bohr_radius*Bohr_radius/(hbarc*hbarc);
00223   static const G4double epsmin = 1.e-4 , epsmax = 1.e10;
00224 
00225   static const G4double Zdat[15] = { 4.,  6., 13., 20., 26., 29., 32., 38., 47.,
00226                                      50., 56., 64., 74., 79., 82. };
00227 
00228   static const G4double Tdat[22] = { 100*eV,  200*eV,  400*eV,  700*eV,
00229                                      1*keV,   2*keV,   4*keV,   7*keV,
00230                                      10*keV,  20*keV,  40*keV,  70*keV,
00231                                      100*keV, 200*keV, 400*keV, 700*keV,
00232                                      1*MeV,   2*MeV,   4*MeV,   7*MeV,
00233                                      10*MeV,  20*MeV};
00234 
00235   // corr. factors for e-/e+ lambda for T <= Tlim
00236   static const G4double celectron[15][22] =
00237           {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054,
00238             1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111,
00239             1.112,1.108,1.100,1.093,1.089,1.087            },
00240            {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051,
00241             1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108,
00242             1.109,1.105,1.097,1.090,1.086,1.082            },
00243            {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156,
00244             1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132,
00245             1.131,1.124,1.113,1.104,1.099,1.098            },
00246            {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236,
00247             1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113,
00248             1.112,1.105,1.096,1.089,1.085,1.098            },
00249            {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265,
00250             1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073,
00251             1.073,1.070,1.064,1.059,1.056,1.056            },
00252            {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330,
00253             1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074,
00254             1.074,1.070,1.063,1.059,1.056,1.052            },
00255            {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386,
00256             1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069,
00257             1.068,1.064,1.059,1.054,1.051,1.050            },
00258            {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439,
00259             1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039,
00260             1.039,1.037,1.034,1.031,1.030,1.036            },
00261            {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631,
00262             1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033,
00263             1.031,1.028,1.024,1.022,1.021,1.024            },
00264            {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669,
00265             1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022,
00266             1.020,1.017,1.015,1.013,1.013,1.020            },
00267            {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720,
00268             1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997,
00269             0.995,0.993,0.993,0.993,0.993,1.011            },
00270            {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855,
00271             1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976,
00272             0.974,0.972,0.973,0.974,0.975,0.987            },
00273            {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059,
00274             1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954,
00275             0.950,0.947,0.949,0.952,0.954,0.963            },
00276            {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182,
00277             1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947,
00278             0.941,0.938,0.940,0.944,0.946,0.954            },
00279            {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239,
00280             1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939,
00281             0.933,0.930,0.933,0.936,0.939,0.949            }};
00282             
00283   static const G4double cpositron[15][22] = {
00284            {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110,
00285             1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131,
00286             1.131,1.126,1.117,1.108,1.103,1.100            },
00287            {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145,
00288             1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137,
00289             1.138,1.132,1.122,1.113,1.108,1.102            },
00290            {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451,
00291             1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205,
00292             1.203,1.190,1.173,1.159,1.151,1.145            },
00293            {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715,
00294             1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228,
00295             1.225,1.210,1.191,1.175,1.166,1.174            },
00296            {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820,
00297             1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219,
00298             1.217,1.203,1.184,1.169,1.160,1.151            },
00299            {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996,
00300             1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241,
00301             1.237,1.222,1.201,1.184,1.174,1.159            },
00302            {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155,
00303             1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256,
00304             1.252,1.234,1.212,1.194,1.183,1.170            },
00305            {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348,
00306             2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258,
00307             1.254,1.237,1.214,1.195,1.185,1.179            },
00308            {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808,
00309             2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320,
00310             1.312,1.288,1.258,1.235,1.221,1.205            },
00311            {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917,
00312             2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327,
00313             1.320,1.294,1.264,1.240,1.226,1.214            },
00314            {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066,
00315             2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336,
00316             1.328,1.302,1.270,1.245,1.231,1.233            },
00317            {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498,
00318             2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371,
00319             1.361,1.330,1.294,1.267,1.251,1.239            },
00320            {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155,
00321             3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423,
00322             1.409,1.372,1.330,1.298,1.280,1.258            },
00323            {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407,
00324             3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459,
00325             1.442,1.400,1.354,1.319,1.299,1.272            },
00326            {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542,
00327             3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474,
00328             1.456,1.412,1.364,1.328,1.307,1.282            }};
00329 
00330   //data/corrections for T > Tlim  
00331   static const G4double Tlim = 10.*MeV;
00332   static const G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/
00333                       ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2));
00334   static const G4double bg2lim   = Tlim*(Tlim+2.*electron_mass_c2)/
00335                       (electron_mass_c2*electron_mass_c2);
00336 
00337   static const G4double sig0[15] = {
00338                      0.2672*barn,  0.5922*barn, 2.653*barn,  6.235*barn,
00339                       11.69*barn  , 13.24*barn  , 16.12*barn, 23.00*barn ,
00340                       35.13*barn  , 39.95*barn  , 50.85*barn, 67.19*barn ,
00341                       91.15*barn  , 104.4*barn  , 113.1*barn};
00342                                        
00343   static const G4double hecorr[15] = {
00344                          120.70, 117.50, 105.00, 92.92, 79.23,  74.510,  68.29,
00345                           57.39,  41.97,  36.14, 24.53, 10.21,  -7.855, -16.84,
00346                          -22.30};
00347 
00348   G4double sigma;
00349   SetParticle(part);
00350 
00351   Z23 = pow(AtomicNumber,2./3.); 
00352 
00353   // correction if particle .ne. e-/e+
00354   // compute equivalent kinetic energy
00355   // lambda depends on p*beta ....
00356 
00357   G4double eKineticEnergy = KineticEnergy;
00358 
00359   if(mass > electron_mass_c2)
00360   {
00361      G4double TAU = KineticEnergy/mass ;
00362      G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ;
00363      G4double w = c-2. ;
00364      G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ;
00365      eKineticEnergy = electron_mass_c2*tau ;
00366   }
00367 
00368   G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ;
00369   G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
00370                                  /(eTotalEnergy*eTotalEnergy);
00371   G4double bg2   = eKineticEnergy*(eTotalEnergy+electron_mass_c2)
00372                                  /(electron_mass_c2*electron_mass_c2);
00373 
00374   G4double eps = epsfactor*bg2/Z23;
00375 
00376   if     (eps<epsmin)  sigma = 2.*eps*eps;
00377   else if(eps<epsmax)  sigma = log(1.+2.*eps)-2.*eps/(1.+2.*eps);
00378   else                 sigma = log(2.*eps)-1.+1./eps;
00379 
00380   sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2);
00381 
00382   // interpolate in AtomicNumber and beta2 
00383   G4double c1,c2,cc1,cc2,corr;
00384 
00385   // get bin number in Z
00386   G4int iZ = 14;
00387   while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1;
00388   if (iZ==14)                               iZ = 13;
00389   if (iZ==-1)                               iZ = 0 ;
00390 
00391   G4double ZZ1 = Zdat[iZ];
00392   G4double ZZ2 = Zdat[iZ+1];
00393   G4double ratZ = (AtomicNumber-ZZ1)*(AtomicNumber+ZZ1)/
00394                   ((ZZ2-ZZ1)*(ZZ2+ZZ1));
00395 
00396   if(eKineticEnergy <= Tlim) 
00397   {
00398     // get bin number in T (beta2)
00399     G4int iT = 21;
00400     while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1;
00401     if(iT==21)                                  iT = 20;
00402     if(iT==-1)                                  iT = 0 ;
00403 
00404     //  calculate betasquare values
00405     G4double T = Tdat[iT],   E = T + electron_mass_c2;
00406     G4double b2small = T*(E+electron_mass_c2)/(E*E);
00407 
00408     T = Tdat[iT+1]; E = T + electron_mass_c2;
00409     G4double b2big = T*(E+electron_mass_c2)/(E*E);
00410     G4double ratb2 = (beta2-b2small)/(b2big-b2small);
00411 
00412     if (charge < 0.)
00413     {
00414        c1 = celectron[iZ][iT];
00415        c2 = celectron[iZ+1][iT];
00416        cc1 = c1+ratZ*(c2-c1);
00417 
00418        c1 = celectron[iZ][iT+1];
00419        c2 = celectron[iZ+1][iT+1];
00420        cc2 = c1+ratZ*(c2-c1);
00421 
00422        corr = cc1+ratb2*(cc2-cc1);
00423 
00424        sigma *= sigmafactor/corr;
00425     }
00426     else              
00427     {
00428        c1 = cpositron[iZ][iT];
00429        c2 = cpositron[iZ+1][iT];
00430        cc1 = c1+ratZ*(c2-c1);
00431 
00432        c1 = cpositron[iZ][iT+1];
00433        c2 = cpositron[iZ+1][iT+1];
00434        cc2 = c1+ratZ*(c2-c1);
00435 
00436        corr = cc1+ratb2*(cc2-cc1);
00437 
00438        sigma *= sigmafactor/corr;
00439     }
00440   }
00441   else
00442   {
00443     c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2;
00444     c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2;
00445     if((AtomicNumber >= ZZ1) && (AtomicNumber <= ZZ2))
00446       sigma = c1+ratZ*(c2-c1) ;
00447     else if(AtomicNumber < ZZ1)
00448       sigma = AtomicNumber*AtomicNumber*c1/(ZZ1*ZZ1);
00449     else if(AtomicNumber > ZZ2)
00450       sigma = AtomicNumber*AtomicNumber*c2/(ZZ2*ZZ2);
00451   }
00452   return sigma;
00453 
00454 }
00455 
00456 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00457 
00458 void G4UrbanMscModel93::StartTracking(G4Track* track)
00459 {
00460   SetParticle(track->GetDynamicParticle()->GetDefinition());
00461   firstStep = true; 
00462   inside = false;
00463   insideskin = false;
00464   tlimit = geombig;
00465   stepmin = tlimitminfix ;
00466   tlimitmin = 10.*stepmin ;
00467 }
00468 
00469 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00470 
00471 G4double G4UrbanMscModel93::ComputeTruePathLengthLimit(
00472                              const G4Track& track,
00473                              G4double& currentMinimalStep)
00474 {
00475   tPathLength = currentMinimalStep;
00476   const G4DynamicParticle* dp = track.GetDynamicParticle();
00477   G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
00478   G4StepStatus stepStatus = sp->GetStepStatus();
00479   couple = track.GetMaterialCutsCouple();
00480   SetCurrentCouple(couple); 
00481   currentMaterialIndex = couple->GetIndex();
00482   currentKinEnergy = dp->GetKineticEnergy();
00483   currentRange = GetRange(particle,currentKinEnergy,couple);
00484   lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy);
00485 
00486   // stop here if small range particle
00487   if(inside || tPathLength < tlimitminfix) { 
00488     return ConvertTrueToGeom(tPathLength, currentMinimalStep); 
00489   } 
00490   
00491   if(tPathLength > currentRange) { tPathLength = currentRange; }
00492 
00493   presafety = sp->GetSafety();
00494 
00495   // G4cout << "G4Urban2::StepLimit tPathLength= " 
00496   //     <<tPathLength<<" safety= " << presafety
00497   //        << " range= " <<currentRange<< " lambda= "<<lambda0
00498   //     << " Alg: " << steppingAlgorithm <<G4endl;
00499 
00500   // far from geometry boundary
00501   if(currentRange < presafety)
00502     {
00503       inside = true;
00504       return ConvertTrueToGeom(tPathLength, currentMinimalStep);  
00505     }
00506 
00507   // standard  version
00508   //
00509   if (steppingAlgorithm == fUseDistanceToBoundary)
00510     {
00511       //compute geomlimit and presafety 
00512       geomlimit = ComputeGeomLimit(track, presafety, currentRange);
00513 
00514       // is it far from boundary ?
00515       if(currentRange < presafety)
00516         {
00517           inside = true;
00518           return ConvertTrueToGeom(tPathLength, currentMinimalStep);   
00519         }
00520 
00521       smallstep += 1.;
00522       insideskin = false;
00523 
00524       if(firstStep || stepStatus == fGeomBoundary)
00525         {
00526           rangeinit = currentRange;
00527           if(firstStep) smallstep = 1.e10;
00528           else  smallstep = 1.;
00529 
00530           //define stepmin here (it depends on lambda!)
00531           //rough estimation of lambda_elastic/lambda_transport
00532           G4double rat = currentKinEnergy/MeV ;
00533           rat = 1.e-3/(rat*(10.+rat)) ;
00534           //stepmin ~ lambda_elastic
00535           stepmin = rat*lambda0;
00536           skindepth = skin*stepmin;
00537           //define tlimitmin
00538           tlimitmin = 10.*stepmin;
00539           if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
00540           //G4cout << "rangeinit= " << rangeinit << " stepmin= " << stepmin
00541           //     << " tlimitmin= " << tlimitmin << " geomlimit= " << geomlimit <<G4endl;
00542           // constraint from the geometry
00543           if((geomlimit < geombig) && (geomlimit > geommin))
00544             {
00545               // geomlimit is a geometrical step length
00546               // transform it to true path length (estimation)
00547               if((1.-geomlimit/lambda0) > 0.)
00548                 geomlimit = -lambda0*log(1.-geomlimit/lambda0)+tlimitmin ;
00549 
00550               if(stepStatus == fGeomBoundary)
00551                 tgeom = geomlimit/facgeom;
00552               else
00553                 tgeom = 2.*geomlimit/facgeom;
00554             }
00555             else
00556               tgeom = geombig;
00557         }
00558 
00559 
00560       //step limit 
00561       tlimit = facrange*rangeinit;              
00562       if(tlimit < facsafety*presafety)
00563         tlimit = facsafety*presafety; 
00564 
00565       //lower limit for tlimit
00566       if(tlimit < tlimitmin) tlimit = tlimitmin;
00567 
00568       if(tlimit > tgeom) tlimit = tgeom;
00569 
00570       //G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit  
00571       //      << " tlimit= " << tlimit << " presafety= " << presafety << G4endl;
00572 
00573       // shortcut
00574       if((tPathLength < tlimit) && (tPathLength < presafety) &&
00575          (smallstep >= skin) && (tPathLength < geomlimit-0.999*skindepth))
00576         return ConvertTrueToGeom(tPathLength, currentMinimalStep);   
00577 
00578       // step reduction near to boundary
00579       if(smallstep < skin)
00580         {
00581           tlimit = stepmin;
00582           insideskin = true;
00583         }
00584       else if(geomlimit < geombig)
00585         {
00586           if(geomlimit > skindepth)
00587             {
00588               if(tlimit > geomlimit-0.999*skindepth)
00589                 tlimit = geomlimit-0.999*skindepth;
00590             }
00591           else
00592             {
00593               insideskin = true;
00594               if(tlimit > stepmin) tlimit = stepmin;
00595             }
00596         }
00597 
00598       if(tlimit < stepmin) tlimit = stepmin;
00599 
00600       // randomize 1st step or 1st 'normal' step in volume
00601       if(firstStep || ((smallstep == skin) && !insideskin)) 
00602         { 
00603           G4double temptlimit = tlimit;
00604           if(temptlimit > tlimitmin)
00605           {
00606             do {
00607               temptlimit = G4RandGauss::shoot(tlimit,0.3*tlimit);        
00608                } while ((temptlimit < tlimitmin) || 
00609                         (temptlimit > 2.*tlimit-tlimitmin));
00610           }
00611           else
00612             temptlimit = tlimitmin;
00613           if(tPathLength > temptlimit) tPathLength = temptlimit;
00614         }
00615       else
00616         {  
00617           if(tPathLength > tlimit) tPathLength = tlimit  ; 
00618         }
00619 
00620     }
00621     // for 'normal' simulation with or without magnetic field 
00622     //  there no small step/single scattering at boundaries
00623   else if(steppingAlgorithm == fUseSafety)
00624     {
00625       // compute presafety again if presafety <= 0 and no boundary
00626       // i.e. when it is needed for optimization purposes
00627       if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix)) 
00628         presafety = ComputeSafety(sp->GetPosition(),tPathLength); 
00629 
00630       // is far from boundary
00631       if(currentRange < presafety)
00632         {
00633           inside = true;
00634           return ConvertTrueToGeom(tPathLength, currentMinimalStep);  
00635         }
00636 
00637       if(firstStep || stepStatus == fGeomBoundary)
00638       {
00639         rangeinit = currentRange;
00640         fr = facrange;
00641         // 9.1 like stepping for e+/e- only (not for muons,hadrons)
00642         if(mass < masslimite) 
00643         {
00644           if(lambda0 > currentRange)
00645             rangeinit = lambda0;
00646           if(lambda0 > lambdalimit)
00647             fr *= 0.75+0.25*lambda0/lambdalimit;
00648         }
00649 
00650         //lower limit for tlimit
00651         G4double rat = currentKinEnergy/MeV ;
00652         rat = 1.e-3/(rat*(10.+rat)) ;
00653         tlimitmin = 10.*lambda0*rat;
00654         if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix;
00655       }
00656       //step limit
00657       tlimit = fr*rangeinit;               
00658 
00659       if(tlimit < facsafety*presafety)
00660         tlimit = facsafety*presafety;
00661 
00662       //lower limit for tlimit
00663       if(tlimit < tlimitmin) tlimit = tlimitmin;
00664       
00665       if(tPathLength > tlimit) tPathLength = tlimit;
00666 
00667     }
00668   
00669   // version similar to 7.1 (needed for some experiments)
00670   else
00671     {
00672       if (stepStatus == fGeomBoundary)
00673         {
00674           if (currentRange > lambda0) tlimit = facrange*currentRange;
00675           else                        tlimit = facrange*lambda0;
00676 
00677           if(tlimit < tlimitmin) tlimit = tlimitmin;
00678           if(tPathLength > tlimit) tPathLength = tlimit;
00679         }
00680     }
00681   //G4cout << "tPathLength= " << tPathLength 
00682   //     << " currentMinimalStep= " << currentMinimalStep << G4endl;
00683   return ConvertTrueToGeom(tPathLength, currentMinimalStep);
00684 }
00685 
00686 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00687 
00688 G4double G4UrbanMscModel93::ComputeGeomPathLength(G4double)
00689 {
00690   firstStep = false; 
00691   lambdaeff = lambda0;
00692   par1 = -1. ;  
00693   par2 = par3 = 0. ;  
00694 
00695   //  do the true -> geom transformation
00696   zPathLength = tPathLength;
00697 
00698   // z = t for very small tPathLength
00699   if(tPathLength < tlimitminfix) return zPathLength;
00700 
00701   // this correction needed to run MSC with eIoni and eBrem inactivated
00702   // and makes no harm for a normal run
00703   if(tPathLength > currentRange)
00704     tPathLength = currentRange ;
00705 
00706   G4double tau   = tPathLength/lambda0 ;
00707 
00708   if ((tau <= tausmall) || insideskin) {
00709     zPathLength  = tPathLength;
00710     if(zPathLength > lambda0) zPathLength = lambda0;
00711     return zPathLength;
00712   }
00713 
00714   G4double zmean = tPathLength;
00715   if (tPathLength < currentRange*dtrl) {
00716     if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ;
00717     else             zmean = lambda0*(1.-exp(-tau));
00718   } else if(currentKinEnergy < mass || tPathLength == currentRange)  {
00719     par1 = 1./currentRange ;
00720     par2 = 1./(par1*lambda0) ;
00721     par3 = 1.+par2 ;
00722     if(tPathLength < currentRange)
00723       zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ;
00724     else
00725       zmean = 1./(par1*par3) ;
00726   } else {
00727     G4double T1 = GetEnergy(particle,currentRange-tPathLength,couple);
00728     G4double lambda1 = GetTransportMeanFreePath(particle,T1);
00729 
00730     par1 = (lambda0-lambda1)/(lambda0*tPathLength) ;
00731     par2 = 1./(par1*lambda0) ;
00732     par3 = 1.+par2 ;
00733     zmean = (1.-exp(par3*log(lambda1/lambda0)))/(par1*par3) ;
00734   }
00735 
00736   zPathLength = zmean ;
00737 
00738   //  sample z
00739   if(samplez)
00740   {
00741     const G4double  ztmax = 0.99 ;
00742     G4double zt = zmean/tPathLength ;
00743 
00744     if (tPathLength > stepmin && zt < ztmax)              
00745     {
00746       G4double u,cz1;
00747       if(zt >= third)
00748       {
00749         G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ;
00750         cz1 = 1.+cz ;
00751         G4double u0 = cz/cz1 ;
00752         G4double grej ;
00753         do {
00754             u = exp(log(G4UniformRand())/cz1) ;
00755             grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ;
00756            } while (grej < G4UniformRand()) ;
00757       }
00758       else
00759       {
00760         cz1 = 1./zt-1.;
00761         u = 1.-exp(log(G4UniformRand())/cz1) ;
00762       }
00763       zPathLength = tPathLength*u ;
00764     }
00765   }
00766 
00767   if(zPathLength > lambda0) zPathLength = lambda0;
00768   //G4cout << "zPathLength= " << zPathLength << " lambda1= " << lambda0 << G4endl;
00769   return zPathLength;
00770 }
00771 
00772 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00773 
00774 G4double G4UrbanMscModel93::ComputeTrueStepLength(G4double geomStepLength)
00775 {
00776   // step defined other than transportation 
00777   if(geomStepLength == zPathLength && tPathLength <= currentRange)
00778     return tPathLength;
00779 
00780   // t = z for very small step
00781   zPathLength = geomStepLength;
00782   tPathLength = geomStepLength;
00783   if(geomStepLength < tlimitminfix) return tPathLength;
00784   
00785   // recalculation
00786   if((geomStepLength > lambda0*tausmall) && !insideskin)
00787   {
00788     if(par1 <  0.)
00789       tPathLength = -lambda0*log(1.-geomStepLength/lambda0) ;
00790     else 
00791     {
00792       if(par1*par3*geomStepLength < 1.)
00793         tPathLength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ;
00794       else 
00795         tPathLength = currentRange;
00796     }  
00797   }
00798   if(tPathLength < geomStepLength) tPathLength = geomStepLength;
00799 
00800   //G4cout << "tPathLength= " << tPathLength << " step= " << geomStepLength << G4endl;
00801 
00802   return tPathLength;
00803 }
00804 
00805 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00806 
00807 G4double G4UrbanMscModel93::ComputeTheta0(G4double trueStepLength,
00808                                           G4double KineticEnergy)
00809 {
00810   // for all particles take the width of the central part
00811   //  from a  parametrization similar to the Highland formula
00812   // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10)
00813   static const G4double c_highland = 13.6*MeV ;
00814   G4double betacp = sqrt(currentKinEnergy*(currentKinEnergy+2.*mass)*
00815                          KineticEnergy*(KineticEnergy+2.*mass)/
00816                       ((currentKinEnergy+mass)*(KineticEnergy+mass)));
00817   y = trueStepLength/currentRadLength;
00818   G4double theta0 = c_highland*std::abs(charge)*sqrt(y)/betacp;
00819   y = log(y);
00820   // correction factor from e- scattering data
00821   G4double corr = coeffth1+coeffth2*y;                
00822 
00823   theta0 *= corr ;                                               
00824 
00825   return theta0;
00826 }
00827 
00828 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00829 
00830 G4ThreeVector& 
00831 G4UrbanMscModel93::SampleScattering(const G4ThreeVector& oldDirection,
00832                                     G4double safety)
00833 {
00834   fDisplacement.set(0.0,0.0,0.0);
00835   G4double kineticEnergy = currentKinEnergy;
00836   if (tPathLength > currentRange*dtrl) {
00837     kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple);
00838   } else {
00839     kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple);
00840   }
00841   if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) ||
00842      (tPathLength/tausmall < lambda0)) { return  fDisplacement; }
00843 
00844   G4double cth  = SampleCosineTheta(tPathLength,kineticEnergy);
00845 
00846   // protection against 'bad' cth values
00847   if(std::fabs(cth) > 1.) { return  fDisplacement; }
00848 
00849   // extra protection agaist high energy particles backscattered 
00850   //  if(cth < 1.0 - 1000*tPathLength/lambda0 && kineticEnergy > 20*MeV) { 
00851     //G4cout << "Warning: large scattering E(MeV)= " << kineticEnergy 
00852     //     << " s(mm)= " << tPathLength/mm
00853     //     << " 1-cosTheta= " << 1.0 - cth << G4endl;
00854     // do Gaussian central scattering
00855   //  if(kineticEnergy > 0.5*GeV && cth < 0.9) {
00856   /*
00857   if(cth < 1.0 - 1000*tPathLength/lambda0 && 
00858      cth < 0.9 && kineticEnergy > 500*MeV) { 
00859     G4ExceptionDescription ed;
00860     ed << particle->GetParticleName()
00861        << " E(MeV)= " << kineticEnergy/MeV
00862        << " Step(mm)= " << tPathLength/mm
00863        << " tau= " << tPathLength/lambda0
00864        << " in " << CurrentCouple()->GetMaterial()->GetName()
00865        << " CosTheta= " << cth 
00866        << " is too big";
00867     G4Exception("G4UrbanMscModel93::SampleScattering","em0004",
00868                 JustWarning, ed,"");
00869   }
00870   */
00871 
00872   G4double sth  = sqrt((1.0 - cth)*(1.0 + cth));
00873   G4double phi  = twopi*G4UniformRand();
00874   G4double dirx = sth*cos(phi);
00875   G4double diry = sth*sin(phi);
00876 
00877   G4ThreeVector newDirection(dirx,diry,cth);
00878   newDirection.rotateUz(oldDirection);
00879   fParticleChange->ProposeMomentumDirection(newDirection);
00880 
00881   if (latDisplasment && safety > tlimitminfix) {
00882 
00883     G4double r = SampleDisplacement();
00884     /*    
00885     G4cout << "G4UrbanMscModel93::SampleSecondaries: e(MeV)= " << kineticEnergy
00886            << " sinTheta= " << sth << " r(mm)= " << r
00887            << " trueStep(mm)= " << tPathLength
00888            << " geomStep(mm)= " << zPathLength
00889            << G4endl;
00890     */
00891     if(r > 0.)
00892       {
00893         G4double latcorr = LatCorrelation();
00894         if(latcorr > r) latcorr = r;
00895 
00896         // sample direction of lateral displacement
00897         // compute it from the lateral correlation
00898         G4double Phi = 0.;
00899         if(std::abs(r*sth) < latcorr)
00900           Phi  = twopi*G4UniformRand();
00901         else
00902         {
00903           G4double psi = std::acos(latcorr/(r*sth));
00904           if(G4UniformRand() < 0.5)
00905             Phi = phi+psi;
00906           else
00907             Phi = phi-psi;
00908         }
00909 
00910         dirx = r*std::cos(Phi);
00911         diry = r*std::sin(Phi);
00912 
00913         fDisplacement.set(dirx,diry,0.0);
00914         fDisplacement.rotateUz(oldDirection);
00915       }
00916   }
00917   return fDisplacement;
00918 }
00919 
00920 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
00921 
00922 G4double G4UrbanMscModel93::SampleCosineTheta(G4double trueStepLength,
00923                                               G4double KineticEnergy)
00924 {
00925   G4double cth = 1. ;
00926   G4double tau = trueStepLength/lambda0 ;
00927 
00928   Zeff = couple->GetMaterial()->GetTotNbOfElectPerVolume()/
00929          couple->GetMaterial()->GetTotNbOfAtomsPerVolume() ;
00930 
00931   if(Zold != Zeff)  
00932     UpdateCache();
00933 
00934   if(insideskin)
00935   {
00936     //no scattering, single or plural scattering
00937     G4double mean = trueStepLength/stepmin ;
00938 
00939     G4int n = G4Poisson(mean);
00940     if(n > 0)
00941     {
00942       //screening (Moliere-Bethe)
00943       G4double mom2 = KineticEnergy*(2.*mass+KineticEnergy);
00944       G4double beta2 = mom2/((KineticEnergy+mass)*(KineticEnergy+mass));
00945       G4double ascr = scr1/mom2;
00946       ascr *= 1.13+scr2/beta2;
00947       G4double ascr1 = 1.+2.*ascr;
00948       G4double bp1=ascr1+1.;
00949       G4double bm1=ascr1-1.;
00950 
00951       // single scattering from screened Rutherford x-section
00952       G4double ct,st,phi;
00953       G4double sx=0.,sy=0.,sz=0.;
00954       for(G4int i=1; i<=n; i++)
00955       {
00956         ct = ascr1-bp1*bm1/(2.*G4UniformRand()+bm1);
00957         if(ct < -1.) ct = -1.;
00958         if(ct >  1.) ct =  1.; 
00959         st = sqrt(1.-ct*ct);
00960         phi = twopi*G4UniformRand();
00961         sx += st*cos(phi);
00962         sy += st*sin(phi);
00963         sz += ct;
00964       }
00965       cth = sz/sqrt(sx*sx+sy*sy+sz*sz);
00966     }
00967   }
00968   else
00969   {
00970     if(trueStepLength >= currentRange*dtrl) 
00971     {
00972       if(par1*trueStepLength < 1.)
00973         tau = -par2*log(1.-par1*trueStepLength) ;
00974       // for the case if ioni/brems are inactivated
00975       // see the corresponding condition in ComputeGeomPathLength 
00976       else if(1.-KineticEnergy/currentKinEnergy > taulim)
00977         tau = taubig ;
00978     }
00979     currentTau = tau ;
00980     lambdaeff = trueStepLength/currentTau;
00981     currentRadLength = couple->GetMaterial()->GetRadlen();
00982 
00983     if (tau >= taubig) cth = -1.+2.*G4UniformRand();
00984     else if (tau >= tausmall)
00985     {
00986       G4double xmeanth, x2meanth;
00987       if(tau < numlim) {
00988         xmeanth = 1.0 - tau*(1.0 - 0.5*tau);
00989         x2meanth= 1.0 - tau*(5.0 - 6.25*tau)/3.;
00990       } else {
00991         xmeanth = exp(-tau);
00992         x2meanth = (1.+2.*exp(-2.5*tau))/3.;
00993       }
00994       G4double relloss = 1.-KineticEnergy/currentKinEnergy;
00995 
00996       if(relloss > rellossmax) 
00997         return SimpleScattering(xmeanth,x2meanth);
00998 
00999       G4double theta0 = ComputeTheta0(trueStepLength,KineticEnergy);
01000 
01001       //G4cout << "Theta0= " << theta0 << " theta0max= " << theta0max 
01002       //             << "  sqrt(tausmall)= " << sqrt(tausmall) << G4endl;
01003 
01004       // protection for very small angles
01005       G4double theta2 = theta0*theta0;
01006 
01007       if(theta2 < tausmall) { return cth; }
01008     
01009       if(theta0 > theta0max) {
01010         return SimpleScattering(xmeanth,x2meanth);
01011       }
01012 
01013       G4double x = theta2*(1.0 - theta2/12.);
01014       if(theta2 > numlim) {
01015         G4double sth = 2.*sin(0.5*theta0);
01016         x = sth*sth;
01017       }
01018 
01019       G4double xmean1 = 1.-(1.-(1.+xsi)*ea)*x/eaa;
01020       G4double x0 = 1. - xsi*x;
01021 
01022       // G4cout << " xmean1= " << xmean1 << "  xmeanth= " << xmeanth << G4endl;
01023 
01024       if(xmean1 <= 0.999*xmeanth) {
01025         return SimpleScattering(xmeanth,x2meanth);
01026       }
01027       // from e- and muon scattering data                    
01028       G4double c = coeffc1+coeffc2*y; 
01029 
01030       // tail should not be too big
01031       if(c < 1.9) { 
01032         /*
01033         if(KineticEnergy > 200*MeV && c < 1.6) {
01034           G4cout << "G4UrbanMscModel93::SampleCosineTheta: E(GeV)= " 
01035                  << KineticEnergy/GeV 
01036                  << " !!** c= " << c
01037                  << " **!! length(mm)= " << trueStepLength << " Zeff= " << Zeff 
01038                  << " " << couple->GetMaterial()->GetName()
01039                  << " tau= " << tau << G4endl;
01040         }
01041         */
01042         c = 1.9; 
01043       }
01044 
01045       if(fabs(c-3.) < 0.001)      { c = 3.001; }
01046       else if(fabs(c-2.) < 0.001) { c = 2.001; }
01047 
01048       G4double c1 = c-1.;
01049 
01050       //from continuity of derivatives
01051       G4double b = 1.+(c-xsi)*x;
01052 
01053       G4double b1 = b+1.;
01054       G4double bx = c*x;
01055 
01056       G4double eb1 = pow(b1,c1);
01057       G4double ebx = pow(bx,c1);
01058       G4double d = ebx/eb1;
01059 
01060       // G4double xmean2 = (x0*eb1+ebx-(eb1*bx-b1*ebx)/(c-2.))/(eb1-ebx);
01061       G4double xmean2 = (x0 + d - (bx - b1*d)/(c-2.))/(1. - d);
01062       
01063       G4double f1x0 = ea/eaa;
01064       G4double f2x0 = c1/(c*(1. - d));
01065       G4double prob = f2x0/(f1x0+f2x0);
01066 
01067       G4double qprob = xmeanth/(prob*xmean1+(1.-prob)*xmean2);
01068 
01069       // sampling of costheta
01070       //G4cout << "c= " << c << " qprob= " << qprob << " eb1= " << eb1
01071       // << " c1= " << c1 << " b1= " << b1 << " bx= " << bx << " eb1= " << eb1
01072       //             << G4endl;
01073       if(G4UniformRand() < qprob)
01074       {
01075         G4double var = 0;
01076         if(G4UniformRand() < prob) {
01077           cth = 1.+log(ea+G4UniformRand()*eaa)*x;
01078         } else {
01079           var = (1.0 - d)*G4UniformRand();
01080           if(var < numlim*d) {
01081             var /= (d*c1); 
01082             cth = -1.0 + var*(1.0 - 0.5*var*c)*(2. + (c - xsi)*x);
01083           } else {
01084             cth = 1. + x*(c - xsi - c*pow(var + d, -1.0/c1));
01085             //b-b1*bx/exp(log(ebx+(eb1-ebx)*G4UniformRand())/c1) ;
01086           }
01087         }
01088         if(KineticEnergy > 5*GeV && cth < 0.9) {
01089           G4cout << "G4UrbanMscModel93::SampleCosineTheta: E(GeV)= " 
01090                  << KineticEnergy/GeV 
01091                  << " 1-cosT= " << 1 - cth
01092                  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff 
01093                  << " tau= " << tau
01094                  << " prob= " << prob << " var= " << var << G4endl;
01095           G4cout << "  c= " << c << " qprob= " << qprob << " eb1= " << eb1
01096                  << " ebx= " << ebx
01097                  << " c1= " << c1 << " b= " << b << " b1= " << b1 
01098                  << " bx= " << bx << " d= " << d
01099                  << " ea= " << ea << " eaa= " << eaa << G4endl;
01100         }
01101       }
01102       else {
01103         cth = -1.+2.*G4UniformRand();
01104         if(KineticEnergy > 5*GeV) {
01105           G4cout << "G4UrbanMscModel93::SampleCosineTheta: E(GeV)= " 
01106                  << KineticEnergy/GeV 
01107                  << " length(mm)= " << trueStepLength << " Zeff= " << Zeff 
01108                  << " qprob= " << qprob << G4endl;
01109         }
01110       }
01111     }
01112   }  
01113   return cth ;
01114 }
01115 
01116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
01117 
01118 G4double G4UrbanMscModel93::SimpleScattering(G4double xmeanth,G4double x2meanth)
01119 {
01120   // 'large angle scattering'
01121   // 2 model functions with correct xmean and x2mean
01122   G4double a = (2.*xmeanth+9.*x2meanth-3.)/(2.*xmeanth-3.*x2meanth+1.);
01123   G4double prob = (a+2.)*xmeanth/a;
01124 
01125   // sampling
01126   G4double cth = 1.;
01127   if(G4UniformRand() < prob)
01128     cth = -1.+2.*exp(log(G4UniformRand())/(a+1.));
01129   else
01130     cth = -1.+2.*G4UniformRand();
01131   return cth;
01132 }
01133 
01134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
01135 
01136 G4double G4UrbanMscModel93::SampleDisplacement()
01137 {
01138   // compute rmean = sqrt(<r**2>) from theory
01139   const G4double kappa = 2.5;
01140   const G4double kappapl1 = kappa+1.;
01141   const G4double kappami1 = kappa-1.;
01142   // Compute rmean = sqrt(<r**2>) from theory
01143   G4double rmean = 0.0;
01144   if ((currentTau >= tausmall) && !insideskin) {
01145     if (currentTau < taulim) {
01146       rmean = kappa*currentTau*currentTau*currentTau*
01147              (1.-kappapl1*currentTau*0.25)/6. ;
01148 
01149     } else {
01150       G4double etau = 0.0;
01151       if (currentTau<taubig) etau = exp(-currentTau);
01152       rmean = -kappa*currentTau;
01153       rmean = -exp(rmean)/(kappa*kappami1);
01154       rmean += currentTau-kappapl1/kappa+kappa*etau/kappami1;
01155     }
01156     if (rmean>0.) rmean = 2.*lambdaeff*sqrt(rmean/3.0);
01157     else          rmean = 0.;
01158   }
01159 
01160   if(rmean == 0.) return rmean;
01161 
01162   // protection against z > t ...........................
01163   G4double rmax = (tPathLength-zPathLength)*(tPathLength+zPathLength);
01164     if(rmax <= 0.)
01165       rmax = 0.;
01166     else
01167       rmax = sqrt(rmax);
01168 
01169   if(rmean >= rmax) return rmax;
01170      
01171   return rmean;
01172   // VI comment out for the time being
01173   /*
01174   //sample r (Gaussian distribution with a mean of rmean )
01175   G4double r = 0.;
01176   G4double sigma = min(rmean,rmax-rmean);
01177   sigma /= 3.;
01178   G4double rlow  = rmean-3.*sigma;
01179   G4double rhigh = rmean+3.*sigma;
01180   do {
01181       r = G4RandGauss::shoot(rmean,sigma);  
01182      } while ((r < rlow) || (r > rhigh));   
01183 
01184   return r;
01185   */
01186 }
01187 
01188 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
01189 
01190 G4double G4UrbanMscModel93::LatCorrelation()
01191 {
01192   const G4double kappa = 2.5;
01193   const G4double kappami1 = kappa-1.;
01194 
01195   G4double latcorr = 0.;
01196   if((currentTau >= tausmall) && !insideskin)
01197   {
01198     if(currentTau < taulim)
01199       latcorr = lambdaeff*kappa*currentTau*currentTau*
01200                 (1.-(kappa+1.)*currentTau/3.)/3.;
01201     else
01202     {
01203       G4double etau = 0.;
01204       if(currentTau < taubig) etau = exp(-currentTau);
01205       latcorr = -kappa*currentTau;
01206       latcorr = exp(latcorr)/kappami1;
01207       latcorr += 1.-kappa*etau/kappami1 ;
01208       latcorr *= 2.*lambdaeff/3. ;
01209     }
01210   }
01211 
01212   return latcorr;
01213 }
01214 
01215 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

Generated on Mon May 27 17:50:08 2013 for Geant4 by  doxygen 1.4.7