G4TritonEvaporationProbability.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // J.M. Quesada (August2008). Based on:
00029 //
00030 // Hadronic Process: Nuclear De-excitations
00031 // by V. Lara (Oct 1998)
00032 //
00033 // Modified:
00034 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
00035 // 17-11-2010 V.Ivanchenko integer Z and A
00036 
00037 #include "G4TritonEvaporationProbability.hh"
00038 #include "G4SystemOfUnits.hh"
00039 
00040 G4TritonEvaporationProbability::G4TritonEvaporationProbability() :
00041     G4EvaporationProbability(3,1,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
00042 {
00043   ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
00044   ResidualAthrd = FragmentAthrd = 0.0;
00045 }
00046 
00047 G4TritonEvaporationProbability::~G4TritonEvaporationProbability()
00048 {}
00049 
00050 G4double G4TritonEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment) 
00051 { 
00052   return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());
00053 }
00054         
00055 G4double G4TritonEvaporationProbability::CalcBetaParam(const G4Fragment & ) 
00056 { 
00057   return 0.0; 
00058 }
00059 
00060 G4double G4TritonEvaporationProbability::CCoeficient(G4int aZ) 
00061 {
00062   // Data comes from 
00063   // Dostrovsky, Fraenkel and Friedlander
00064   // Physical Review, vol 116, num. 3 1959
00065   // 
00066   // const G4int size = 5;
00067   // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
00068   // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10};
00069   // C for triton is equal to C for protons divided by 3
00070   G4double C = 0.0;
00071         
00072   if (aZ >= 70) {
00073     C = 0.10;
00074   } else {
00075     C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
00076   }
00077         
00078   return C/3.0;
00079 }
00080 
00082 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections 
00083 //OPT=0 Dostrovski's parameterization
00084 //OPT=1,2 Chatterjee's paramaterization 
00085 //OPT=3,4 Kalbach's parameterization 
00086 // 
00087 G4double 
00088 G4TritonEvaporationProbability::CrossSection(const  G4Fragment & fragment, G4double K)
00089 {
00090   theA=GetA();
00091   theZ=GetZ();
00092   ResidualA=fragment.GetA_asInt()-theA;
00093   ResidualZ=fragment.GetZ_asInt()-theZ; 
00094   
00095   ResidualAthrd=fG4pow->Z13(ResidualA);
00096   FragmentA=fragment.GetA_asInt();
00097   FragmentAthrd=fG4pow->Z13(FragmentA);
00098 
00099   if (OPTxs==0) {std::ostringstream errOs;
00100     errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (tritons)!!"  
00101           <<G4endl;
00102     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00103     return 0.;}
00104   if( OPTxs==1 || OPTxs==2) return G4TritonEvaporationProbability::GetOpt12( K);
00105   else if (OPTxs==3 || OPTxs==4)  return G4TritonEvaporationProbability::GetOpt34( K);
00106   else{
00107     std::ostringstream errOs;
00108     errOs << "BAD Triton CROSS SECTION OPTION AT EVAPORATION!!"  <<G4endl;
00109     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00110     return 0.;
00111   }
00112 }
00113 
00114 //
00115 //********************* OPT=1,2 : Chatterjee's cross section *****************
00116 //(fitting to cross section from Bechetti & Greenles OM potential)
00117 
00118 G4double G4TritonEvaporationProbability::GetOpt12(G4double K)
00119 {
00120   G4double Kc=K;
00121 
00122   // JMQ xsec is set constat above limit of validity
00123   if (K > 50*MeV) { Kc=50*MeV; }
00124 
00125   G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
00126  
00127   G4double    p0 = -11.04;
00128   G4double    p1 = 619.1;
00129   G4double    p2 = -2147.;
00130   G4double    landa0 = -0.0426;
00131   G4double    landa1 = -10.33;
00132   G4double    mum0 = 601.9;
00133   G4double    mu1 = 0.37;
00134   G4double    nu0 = 583.0;
00135   G4double    nu1 = -546.2;
00136   G4double    nu2 = 1.718;  
00137   G4double    delta=1.2;            
00138 
00139   Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
00140   p = p0 + p1/Ec + p2/(Ec*Ec);
00141   landa = landa0*ResidualA + landa1;
00142 
00143   G4double resmu1 = fG4pow->powZ(ResidualA,mu1); 
00144   mu = mum0*resmu1;
00145   nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
00146   q = landa - nu/(Ec*Ec) - 2*p*Ec;
00147   r = mu + 2*nu/Ec + p*(Ec*Ec);
00148   
00149   ji=std::max(Kc,Ec);
00150   if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
00151   else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
00152                  
00153   if (xs <0.0) {xs=0.0;}
00154               
00155   return xs;
00156 }
00157 
00158 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
00159 G4double G4TritonEvaporationProbability::GetOpt34(G4double K)
00160 //     ** t from o.m. of hafele, flynn et al
00161 {
00162   G4double landa, mu, nu, p , signor(1.),sig;
00163   G4double ec,ecsq,xnulam,etest(0.),a; 
00164   G4double b,ecut,cut,ecut2,geom,elab;
00165 
00166   G4double     flow = 1.e-18;
00167   G4double     spill= 1.e+18;
00168 
00169   G4double     p0 = -21.45;
00170   G4double     p1 = 484.7;
00171   G4double     p2 = -1608.;
00172   G4double     landa0 = 0.0186;
00173   G4double     landa1 = -8.90;
00174   G4double     mum0 = 686.3;
00175   G4double     mu1 = 0.325;
00176   G4double     nu0 = 368.9;
00177   G4double     nu1 = -522.2;
00178   G4double     nu2 = -4.998;  
00179   
00180   G4double      ra=0.80;
00181         
00182   //JMQ 13/02/09 increase of reduced radius to lower the barrier
00183   // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
00184   ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
00185   ecsq = ec * ec;
00186   p = p0 + p1/ec + p2/ecsq;
00187   landa = landa0*ResidualA + landa1;
00188   a = fG4pow->powZ(ResidualA,mu1);
00189   mu = mum0 * a;
00190   nu = a* (nu0+nu1*ec+nu2*ecsq);  
00191   xnulam = nu / landa;
00192   if (xnulam > spill) { xnulam=0.; }
00193   if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
00194  
00195   a = -2.*p*ec + landa - nu/ecsq;
00196   b = p*ecsq + mu + 2.*nu/ec;
00197   ecut = 0.;
00198   cut = a*a - 4.*p*b;
00199   if (cut > 0.) { ecut = std::sqrt(cut); }
00200   ecut = (ecut-a) / (p+p);
00201   ecut2 = ecut;
00202   //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
00203   // ecut<0 means that there is no cut with energy axis, i.e. xs is set 
00204   // to 0 bellow minimum
00205   //  if (cut < 0.) ecut2 = ecut - 2.;
00206   if (cut < 0.) { ecut2 = ecut; }
00207   elab = K * FragmentA / G4double(ResidualA);
00208   sig = 0.;
00209  
00210   if (elab <= ec) { //start for E<Ec
00211     if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
00212   }           //end for E<Ec
00213   else {           //start for E>Ec
00214     sig = (landa*elab+mu+nu/elab) * signor;
00215     geom = 0.;
00216     if (xnulam < flow || elab < etest) { return sig; }
00217     geom = std::sqrt(theA*K);
00218     geom = 1.23*ResidualAthrd + ra + 4.573/geom;
00219     geom = 31.416 * geom * geom;
00220     sig = std::max(geom,sig);
00221   }           //end for E>Ec
00222   return sig;
00223 }
00224 

Generated on Mon May 27 17:50:03 2013 for Geant4 by  doxygen 1.4.7