G4QPionPlusElasticCrossSection.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 //
00027 // $Id$
00028 //
00029 //
00030 // G4 Physics class: G4QPionPlusElasticCrossSection for pA elastic cross sections
00031 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
00032 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
00033 // 
00034 // -------------------------------------------------------------------------------
00035 // Short description: Interaction cross-sections for the G4QElastic process
00036 // -------------------------------------------------------------------------------
00037 
00038 //#define debug
00039 //#define isodebug
00040 //#define pdebug
00041 //#define ppdebug
00042 //#define tdebug
00043 //#define sdebug
00044 
00045 #include "G4QPionPlusElasticCrossSection.hh"
00046 #include "G4SystemOfUnits.hh"
00047 
00048 // Initialization of the static parameters
00049 const G4int G4QPionPlusElasticCrossSection::nPoints=128;//#ofPt in AMDB table(>anyPar)(D)
00050 const G4int G4QPionPlusElasticCrossSection::nLast=nPoints-1;// theLastElement inTheTable(D)
00051 G4double  G4QPionPlusElasticCrossSection::lPMin=-8.;  // Min tabulated logarithmMomentum(D)
00052 G4double  G4QPionPlusElasticCrossSection::lPMax= 8.;  // Max tabulated logarithmMomentum(D)
00053 G4double  G4QPionPlusElasticCrossSection::dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
00054 G4bool    G4QPionPlusElasticCrossSection::onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
00055 G4double  G4QPionPlusElasticCrossSection::lastSIG=0.; // Last calculated cross section  (L)
00056 G4double  G4QPionPlusElasticCrossSection::lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
00057 G4double  G4QPionPlusElasticCrossSection::lastTM=0.;  // Last t_maximum                 (L)
00058 G4double  G4QPionPlusElasticCrossSection::theSS=0.;   // TheLastSqSlope of 1st difr.Max(L)
00059 G4double  G4QPionPlusElasticCrossSection::theS1=0.;   // TheLastMantissa of 1st difr.Max(L)
00060 G4double  G4QPionPlusElasticCrossSection::theB1=0.;   // TheLastSlope of 1st difruct.Max(L)
00061 G4double  G4QPionPlusElasticCrossSection::theS2=0.;   // TheLastMantissa of 2nd difr.Max(L)
00062 G4double  G4QPionPlusElasticCrossSection::theB2=0.;   // TheLastSlope of 2nd difruct.Max(L)
00063 G4double  G4QPionPlusElasticCrossSection::theS3=0.;   // TheLastMantissa of 3d difr. Max(L)
00064 G4double  G4QPionPlusElasticCrossSection::theB3=0.;   // TheLastSlope of 3d difruct. Max(L)
00065 G4double  G4QPionPlusElasticCrossSection::theS4=0.;   // TheLastMantissa of 4th difr.Max(L)
00066 G4double  G4QPionPlusElasticCrossSection::theB4=0.;   // TheLastSlope of 4th difruct.Max(L)
00067 G4int     G4QPionPlusElasticCrossSection::lastTZ=0;   // Last atomic number of the target
00068 G4int     G4QPionPlusElasticCrossSection::lastTN=0;   // Last # of neutrons in the target
00069 G4double  G4QPionPlusElasticCrossSection::lastPIN=0.; // Last initialized max momentum
00070 G4double* G4QPionPlusElasticCrossSection::lastCST=0;  // Elastic cross-section table
00071 G4double* G4QPionPlusElasticCrossSection::lastPAR=0;  // ParametersForFunctionalCalculation
00072 G4double* G4QPionPlusElasticCrossSection::lastSST=0;  // E-dep of SqaredSlope of 1st difMax
00073 G4double* G4QPionPlusElasticCrossSection::lastS1T=0;  // E-dep of mantissa of 1st dif.Max
00074 G4double* G4QPionPlusElasticCrossSection::lastB1T=0;  // E-dep of the slope of 1st difMax
00075 G4double* G4QPionPlusElasticCrossSection::lastS2T=0;  // E-dep of mantissa of 2nd difrMax
00076 G4double* G4QPionPlusElasticCrossSection::lastB2T=0;  // E-dep of the slope of 2nd difMax
00077 G4double* G4QPionPlusElasticCrossSection::lastS3T=0;  // E-dep of mantissa of 3d difr.Max
00078 G4double* G4QPionPlusElasticCrossSection::lastB3T=0;  // E-dep of the slope of 3d difrMax
00079 G4double* G4QPionPlusElasticCrossSection::lastS4T=0;  // E-dep of mantissa of 4th difrMax
00080 G4double* G4QPionPlusElasticCrossSection::lastB4T=0;  // E-dep of the slope of 4th difMax
00081 G4int     G4QPionPlusElasticCrossSection::lastN=0;    // The last N of calculated nucleus
00082 G4int     G4QPionPlusElasticCrossSection::lastZ=0;    // The last Z of calculated nucleus
00083 G4double  G4QPionPlusElasticCrossSection::lastP=0.;   // LastUsed in cross section Momentum
00084 G4double  G4QPionPlusElasticCrossSection::lastTH=0.;  // Last threshold momentum
00085 G4double  G4QPionPlusElasticCrossSection::lastCS=0.;  // Last value of the Cross Section
00086 G4int     G4QPionPlusElasticCrossSection::lastI=0;    // The last position in the DAMDB
00087 
00088 std::vector<G4double*> G4QPionPlusElasticCrossSection::PAR;// Vector of pars forFunctCalcul
00089 std::vector<G4double*> G4QPionPlusElasticCrossSection::CST;// Vector of cross-section table
00090 std::vector<G4double*> G4QPionPlusElasticCrossSection::SST;// Vector of the 1st SquareSlope
00091 std::vector<G4double*> G4QPionPlusElasticCrossSection::S1T;// Vector of the 1st mantissa
00092 std::vector<G4double*> G4QPionPlusElasticCrossSection::B1T;// Vector of the 1st slope
00093 std::vector<G4double*> G4QPionPlusElasticCrossSection::S2T;// Vector of the 2nd mantissa
00094 std::vector<G4double*> G4QPionPlusElasticCrossSection::B2T;// Vector of the 2nd slope
00095 std::vector<G4double*> G4QPionPlusElasticCrossSection::S3T;// Vector of the 3d mantissa
00096 std::vector<G4double*> G4QPionPlusElasticCrossSection::B3T;// Vector of the 3d slope
00097 std::vector<G4double*> G4QPionPlusElasticCrossSection::S4T;// Vector of the 4th mantissa(g)
00098 std::vector<G4double*> G4QPionPlusElasticCrossSection::B4T;// Vector of the 4th slope(glor)
00099 
00100 G4QPionPlusElasticCrossSection::G4QPionPlusElasticCrossSection()
00101 {
00102 }
00103 
00104 G4QPionPlusElasticCrossSection::~G4QPionPlusElasticCrossSection()
00105 {
00106   std::vector<G4double*>::iterator pos;
00107   for (pos=CST.begin(); pos<CST.end(); pos++)
00108   { delete [] *pos; }
00109   CST.clear();
00110   for (pos=PAR.begin(); pos<PAR.end(); pos++)
00111   { delete [] *pos; }
00112   PAR.clear();
00113   for (pos=SST.begin(); pos<SST.end(); pos++)
00114   { delete [] *pos; }
00115   SST.clear();
00116   for (pos=S1T.begin(); pos<S1T.end(); pos++)
00117   { delete [] *pos; }
00118   S1T.clear();
00119   for (pos=B1T.begin(); pos<B1T.end(); pos++)
00120   { delete [] *pos; }
00121   B1T.clear();
00122   for (pos=S2T.begin(); pos<S2T.end(); pos++)
00123   { delete [] *pos; }
00124   S2T.clear();
00125   for (pos=B2T.begin(); pos<B2T.end(); pos++)
00126   { delete [] *pos; }
00127   B2T.clear();
00128   for (pos=S3T.begin(); pos<S3T.end(); pos++)
00129   { delete [] *pos; }
00130   S3T.clear();
00131   for (pos=B3T.begin(); pos<B3T.end(); pos++)
00132   { delete [] *pos; }
00133   B3T.clear();
00134   for (pos=S4T.begin(); pos<S4T.end(); pos++)
00135   { delete [] *pos; }
00136   S4T.clear();
00137   for (pos=B4T.begin(); pos<B4T.end(); pos++)
00138   { delete [] *pos; }
00139   B4T.clear();
00140 }
00141 
00142 // Returns Pointer to the G4VQCrossSection class
00143 G4VQCrossSection* G4QPionPlusElasticCrossSection::GetPointer()
00144 {
00145   static G4QPionPlusElasticCrossSection theCrossSection;//StaticBody of theQEl CrossSection
00146 #ifdef pdebug
00147   G4cout<<"G4QPiPlElCS::GetCS: PiPlus Elastic pointer is taken"<<G4endl;
00148 #endif
00149   return &theCrossSection;
00150 }
00151 
00152 // The main member function giving the collision cross section (P is in IU, CS is in mb)
00153 // Make pMom in independent units ! (Now it is MeV)
00154 G4double G4QPionPlusElasticCrossSection::GetCrossSection(G4bool fCS, G4double pMom,
00155                                                          G4int tgZ, G4int tgN, G4int pPDG)
00156 {
00157   static std::vector <G4int>    colN;  // Vector of N for calculated nuclei (isotops)
00158   static std::vector <G4int>    colZ;  // Vector of Z for calculated nuclei (isotops)
00159   static std::vector <G4double> colP;  // Vector of last momenta for the reaction
00160   static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
00161   static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
00162   // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
00163   G4double pEn=pMom;
00164   onlyCS=fCS;
00165 #ifdef pdebug
00166   G4cout<<"G4QPElCS::GetCS:>>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="
00167         <<tgN<<"("<<lastN<<"), T="<<pEn<<"("<<lastTH<<")"<<",Sz="<<colN.size()<<G4endl;
00168   //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00169 #endif
00170   if(pPDG!= 211)
00171   {
00172     G4cout<<"*Warning*G4QPionPlusElCS::GetCS:**> Found pPDG="<<pPDG<<" =--=> CS=0"<<G4endl;
00173     //CalculateCrossSection(fCS,-27,j,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00174     return 0.;                         // projectile PDG=0 is a mistake (?!) @@
00175   }
00176   G4bool in=false;                   // By default the isotope must be found in the AMDB
00177   lastP   = 0.;                      // New momentum history (nothing to compare with)
00178   lastN   = tgN;                     // The last N of the calculated nucleus
00179   lastZ   = tgZ;                     // The last Z of the calculated nucleus
00180   lastI   = colN.size();             // Size of the Associative Memory DB in the heap
00181   if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
00182   {                                  // The nucleus with projPDG is found in AMDB
00183     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
00184     {
00185       lastI=i;
00186       lastTH =colTH[i];              // Last THreshold (A-dependent)
00187 #ifdef debug
00188       G4cout<<"G4QElCS::GetCS:*Found* P="<<pMom<<",Threshold="<<lastTH<<",i="<<i<<G4endl;
00189       //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00190 #endif
00191       if(pEn<=lastTH)
00192       {
00193 #ifdef debug
00194         G4cout<<"G4QElCS::GetCS:Found T="<<pEn<<" < Threshold="<<lastTH<<",CS=0"<<G4endl;
00195         //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00196 #endif
00197         return 0.;                   // Energy is below the Threshold value
00198       }
00199       lastP  =colP [i];              // Last Momentum  (A-dependent)
00200       lastCS =colCS[i];              // Last CrossSect (A-dependent)
00201       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
00202       if(lastP == pMom)              // Do not recalculate
00203       {
00204 #ifdef debug
00205         G4cout<<"G4QElCS::GetCS:P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
00206 #endif
00207         CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
00208         return lastCS*millibarn;     // Use theLastCS
00209       }
00210       in = true;                       // This is the case when the isotop is found in DB
00211       // Momentum pMom is in IU ! @@ Units
00212 #ifdef debug
00213       G4cout<<"G4QElCS::G:UpdateDB P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",i="<<i<<G4endl;
00214 #endif
00215       lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
00216 #ifdef debug
00217       G4cout<<"G4QElCS::GetCrosSec: *****> New (inDB) Calculated CS="<<lastCS<<G4endl;
00218       //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00219 #endif
00220       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
00221       {
00222 #ifdef debug
00223         G4cout<<"G4QElCS::GetCS: New T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
00224 #endif
00225         lastTH=pEn;
00226       }
00227       break;                           // Go out of the LOOP with found lastI
00228     }
00229 #ifdef debug
00230     G4cout<<"---G4QElCrossSec::GetCrosSec:pPDG="<<pPDG<<",i="<<i<<",N="<<colN[i]
00231           <<",Z["<<i<<"]="<<colZ[i]<<G4endl;
00232     //CalculateCrossSection(fCS,-27,i,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00233 #endif
00234   } // End of attampt to find the nucleus in DB
00235   if(!in)                            // This nucleus has not been calculated previously
00236   {
00237 #ifdef debug
00238     G4cout<<"G4QElCS::GetCrosSec:CalcNew P="<<pMom<<",f="<<fCS<<",lastI="<<lastI<<G4endl;
00239 #endif
00241     lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
00242     if(lastCS<=0.)
00243     {
00244       lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
00245 #ifdef debug
00246       G4cout<<"G4QElCrossSection::GetCrossSect: NewThresh="<<lastTH<<",T="<<pEn<<G4endl;
00247 #endif
00248       if(pEn>lastTH)
00249       {
00250 #ifdef debug
00251         G4cout<<"G4QElCS::GetCS: First T="<<pEn<<"(CS=0) > Threshold="<<lastTH<<G4endl;
00252 #endif
00253         lastTH=pEn;
00254       }
00255     }
00256 #ifdef debug
00257     G4cout<<"G4QElCS::GetCrosSec: New CS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
00258     //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00259 #endif
00260     colN.push_back(tgN);
00261     colZ.push_back(tgZ);
00262     colP.push_back(pMom);
00263     colTH.push_back(lastTH);
00264     colCS.push_back(lastCS);
00265 #ifdef debug
00266     G4cout<<"G4QElCS::GetCS:1st,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
00267     //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00268 #endif
00269     return lastCS*millibarn;
00270   } // End of creation of the new set of parameters
00271   else
00272   {
00273 #ifdef debug
00274     G4cout<<"G4QElCS::GetCS: Update lastI="<<lastI<<G4endl;
00275 #endif
00276     colP[lastI]=pMom;
00277     colCS[lastI]=lastCS;
00278   }
00279 #ifdef debug
00280   G4cout<<"G4QElCS::GetCrSec:End,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
00281   //CalculateCrossSection(fCS,-27,lastI,pPDG,lastZ,lastN,pMom); // DUMMY TEST
00282   G4cout<<"G4QElCS::GetCrSec:***End***, onlyCS="<<onlyCS<<G4endl;
00283 #endif
00284   return lastCS*millibarn;
00285 }
00286 
00287 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
00288 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
00289 G4double G4QPionPlusElasticCrossSection::CalculateCrossSection(G4bool CS, G4int F, G4int I,
00290                                              G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
00291 {
00292   // *** Begin of Associative Memory DB for acceleration of the cross section calculations
00293   static std::vector <G4double>  PIN;   // Vector of max initialized log(P) in the table
00294   // *** End of Static Definitions (Associative Memory Data Base) ***
00295   G4double pMom=pIU/GeV;                // All calculations are in GeV
00296   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
00297 #ifdef debug
00298   G4cout<<"G4QPionPlusElasticCroS::CalcCS:->onlyCS="<<onlyCS<<",F="<<F<<",p="<<pIU<<G4endl;
00299 #endif
00300   lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
00301   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
00302   {
00303     if(F<0)                             // the AMDB must be loded
00304     {
00305       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
00306       lastPAR = PAR[I];                 // Pointer to the parameter set
00307       lastCST = CST[I];                 // Pointer to the total sross-section table
00308       lastSST = SST[I];                 // Pointer to the first squared slope
00309       lastS1T = S1T[I];                 // Pointer to the first mantissa
00310       lastB1T = B1T[I];                 // Pointer to the first slope
00311       lastS2T = S2T[I];                 // Pointer to the second mantissa
00312       lastB2T = B2T[I];                 // Pointer to the second slope
00313       lastS3T = S3T[I];                 // Pointer to the third mantissa
00314       lastB3T = B3T[I];                 // Pointer to the rhird slope
00315       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
00316       lastB4T = B4T[I];                 // Pointer to the 4-th slope
00317 #ifdef debug
00318       G4cout<<"G4QElasticCS::CalcCS: DB is updated for I="<<I<<",*,PIN4="<<PIN[4]<<G4endl;
00319 #endif
00320     }
00321 #ifdef debug
00322     G4cout<<"G4QPionPlusElasticCroS::CalcCS:*read*, LP="<<lastLP<<",PIN="<<lastPIN<<G4endl;
00323 #endif
00324     if(lastLP>lastPIN && lastLP<lPMax)
00325     {
00326       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
00327 #ifdef debug
00328       G4cout<<"G4QElCS::CalcCS:*updated(I)*,LP="<<lastLP<<"<IN["<<I<<"]="<<lastPIN<<G4endl;
00329 #endif
00330       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
00331     }
00332   }
00333   else                                  // This isotope wasn't initialized => CREATE
00334   {
00335     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
00336     lastPAR[nLast]=0;                   // Initialization for VALGRIND
00337     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
00338     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
00339     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
00340     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
00341     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
00342     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
00343     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
00344     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
00345     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
00346     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
00347 #ifdef debug
00348     G4cout<<"G4QPionPlusElasticCroS::CalcCS:*ini*,lastLP="<<lastLP<<",min="<<lPMin<<G4endl;
00349 #endif
00350     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
00351 #ifdef debug
00352     G4cout<<"G4QPiPlElCS::CCS:i,Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<",LP"<<lastPIN<<G4endl;
00353 #endif
00354     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
00355     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
00356     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
00357     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
00358     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
00359     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
00360     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
00361     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
00362     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
00363     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
00364     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
00365     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
00366   } // End of creation/update of the new set of parameters and tables
00367   // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
00368 #ifdef debug
00369   G4cout<<"G4QElCS::CalcCS:?update?,LP="<<lastLP<<",IN="<<lastPIN<<",ML="<<lPMax<<G4endl;
00370 #endif
00371   if(lastLP>lastPIN && lastLP<lPMax)
00372   {
00373     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
00374 #ifdef debug
00375     G4cout<<"G4QElCS::CalcCS: *updated(O)*, LP="<<lastLP<<" < IN="<<lastPIN<<G4endl;
00376 #endif
00377   }
00378 #ifdef debug
00379   G4cout<<"G4QElastCS::CalcCS: lastLP="<<lastLP<<",lPM="<<lPMin<<",lPIN="<<lastPIN<<G4endl;
00380 #endif
00381   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
00382 #ifdef debug
00383   G4cout<<"G4QElasticCrosSec::CalcCS:oCS="<<onlyCS<<",-t="<<lastTM<<", p="<<lastLP<<G4endl;
00384 #endif
00385   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
00386   {
00387     if(lastLP==lastPIN)
00388     {
00389       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
00390       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
00391       if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
00392       lastSIG = lastCST[blast];
00393       if(!onlyCS)                       // Skip the differential cross-section parameters
00394       {
00395         theSS  = lastSST[blast];
00396         theS1  = lastS1T[blast];
00397         theB1  = lastB1T[blast];
00398         theS2  = lastS2T[blast];
00399         theB2  = lastB2T[blast];
00400         theS3  = lastS3T[blast];
00401         theB3  = lastB3T[blast];
00402         theS4  = lastS4T[blast];
00403         theB4  = lastB4T[blast];
00404       }
00405 #ifdef debug
00406       G4cout<<"G4QPionPlusElasticCroS::CalculateCS:(E) S1="<<theS1<<", B1="<<theB1<<G4endl;
00407 #endif
00408     }
00409     else
00410     {
00411       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
00412       G4int    blast=static_cast<int>(shift);    // the lower bin number
00413       if(blast<0)   blast=0;
00414       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
00415       shift-=blast;                              // step inside the unit bin
00416       G4int lastL=blast+1;                       // the upper bin number
00417       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
00418       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
00419 #ifdef debug
00420       G4cout<<"G4QElCS::CalcCrossSection: Sig="<<lastSIG<<", P="<<pMom<<", Z="<<tgZ<<", N="
00421             <<tgN<<", PDG="<<PDG<<", onlyCS="<<onlyCS<<G4endl;
00422 #endif
00423       if(!onlyCS)                       // Skip the differential cross-section parameters
00424       {
00425         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
00426         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
00427         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
00428         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
00429         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
00430 #ifdef debug
00431         G4cout<<"G4QElCS::CalcCrossSection:bl="<<blast<<",ls="<<lastL<<",SL="<<S1TL<<",SU="
00432               <<lastS1T[lastL]<<",BL="<<B1TL<<",BU="<<lastB1T[lastL]<<G4endl;
00433 #endif
00434         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
00435         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
00436         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
00437         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
00438         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
00439         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
00440         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
00441 #ifdef debug
00442         G4cout<<"G4QElCS::CCS: s3l="<<S3TL<<",sh3="<<shift<<",s3h="<<lastS3T[lastL]<<",b="
00443               <<blast<<",l="<<lastL<<G4endl;
00444 #endif
00445         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
00446         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
00447         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
00448         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
00449 #ifdef debug
00450         G4cout<<"G4QElCS::CCS: s4l="<<S4TL<<",sh4="<<shift<<",s4h="<<lastS4T[lastL]<<",b="
00451               <<blast<<",l="<<lastL<<G4endl;
00452 #endif
00453         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
00454         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
00455       }
00456 #ifdef debug
00457       G4cout<<"G4QPionPlusElasticCroS::CalculateCS:(I) S1="<<theS1<<", B1="<<theB1<<G4endl;
00458 #endif
00459     }
00460   }
00461   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
00462   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
00463 #ifdef debug
00464   G4cout<<"G4QPionPlusElasticCrossSection::CalculateCS: END, onlyCS="<<onlyCS<<G4endl;
00465 #endif
00466   return lastSIG;
00467 }
00468 
00469 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
00470 G4double G4QPionPlusElasticCrossSection::GetPTables(G4double LP, G4double ILP, G4int PDG,
00471                                                   G4int tgZ, G4int tgN)
00472 {
00473   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
00474   static const G4double pwd=2727;
00475   const G4int n_pippel=35;               // #of parameters for pip_p-elastic (<nPoints=128)
00476   //                           -0- -1-   -2- -3- -4-  -5-   -6-  -7--8--9--10-11-12--13-
00477   G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
00478                               3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
00479                               3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
00480   //                         -14--15--16--17--18- -19--20-  -21-  -22-  -23- -24- -25-
00481   //                          -26-   -27-  -28-  -29- -30-  -31- -32- -33- -34-
00482   if(PDG == 211)
00483   {
00484     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
00485     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
00486     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
00487     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
00488     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
00489     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
00490     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
00491     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
00492     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
00493     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
00494     //
00495     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
00496     {
00497       if ( tgZ == 1 && tgN == 0 )
00498       {
00499         for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
00500       }
00501       else
00502       {
00503         G4double a=tgZ+tgN;
00504         G4double sa=std::sqrt(a);
00505         G4double ssa=std::sqrt(sa);
00506         G4double asa=a*sa;
00507         G4double a2=a*a;
00508         G4double a3=a2*a;
00509         G4double a4=a3*a;
00510         G4double a5=a4*a;
00511         G4double a6=a4*a2;
00512         G4double a7=a6*a;
00513         G4double a8=a7*a;
00514         G4double a9=a8*a;
00515         G4double a10=a5*a5;
00516         G4double a12=a6*a6;
00517         G4double a14=a7*a7;
00518         G4double a16=a8*a8;
00519         G4double a17=a16*a;
00520         //G4double a20=a16*a4;
00521         G4double a32=a16*a16;
00522         // Reaction cross-section parameters (pel=peh_fit.f)
00523         lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a);                              // p1
00524         lastPAR[1]=a/(1./4.4+1./a);                                          // p2
00525         lastPAR[2]=.22/std::pow(a,.33);                                      // p3
00526         lastPAR[3]=.5*a/(1.+3./a+1800./a8);                                  // p4
00527         lastPAR[4]=3.E-4*std::pow(a,.32)/(1.+14./a2);                        // p5
00528         lastPAR[5]=0.;                                                       // p6 not used
00529         lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2);                              // p7
00530         lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4);                           // p8
00531         lastPAR[8]=0.;                                                       // p9 not used
00532         // @@ the differential cross-section is parameterized separately for A>6 & A<7
00533         if(a<6.5)
00534         {
00535           G4double a28=a16*a12;
00536           // The main pre-exponent      (pel_sg)
00537           lastPAR[ 9]=4000*a;                                // p1
00538           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
00539           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
00540           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
00541           lastPAR[13]=.28*a;                                 // p5
00542           lastPAR[14]=1.2*a2+2.3;                            // p6
00543           lastPAR[15]=3.8/a;                                 // p7
00544           // The main slope             (pel_sl)
00545           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
00546           lastPAR[17]=.2*a;                                  // p2
00547           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
00548           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
00549           // The main quadratic         (pel_sh)
00550           lastPAR[20]=2.25*a3;                               // p1
00551           lastPAR[21]=18.;                                   // p2
00552           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
00553           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
00554           // The 1st max pre-exponent   (pel_qq)
00555           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
00556           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
00557           lastPAR[26]=.0006*a3;                              // p3
00558           // The 1st max slope          (pel_qs)
00559           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
00560           lastPAR[28]=.114;                                  // p2
00561           lastPAR[29]=.003;                                  // p3
00562           lastPAR[30]=2.e-23;                                // p4
00563           // The effective pre-exponent (pel_ss)
00564           lastPAR[31]=1./(1.+.0001*a8);                      // p1
00565           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
00566           lastPAR[33]=.03;                                   // p3
00567           // The effective slope        (pel_sb)
00568           lastPAR[34]=a/2;                                   // p1
00569           lastPAR[35]=2.e-7*a4;                              // p2
00570           lastPAR[36]=4.;                                    // p3
00571           lastPAR[37]=64./a3;                                // p4
00572           // The gloria pre-exponent    (pel_us)
00573           lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
00574           lastPAR[39]=20.*std::exp(.45*asa);                 // p2
00575           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
00576           lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
00577           lastPAR[42]=2.5*a;                                 // p5
00578           // The gloria slope           (pel_ub)
00579           lastPAR[43]=920.+.03*a8*a3;                        // p1
00580           lastPAR[44]=93.+.0023*a12;                         // p2
00581 #ifdef debug
00582          G4cout<<"G4QElCS::CalcCS:la "<<lastPAR[38]<<", "<<lastPAR[39]<<", "<<lastPAR[40]
00583                <<", "<<lastPAR[42]<<", "<<lastPAR[43]<<", "<<lastPAR[44]<<G4endl;
00584 #endif
00585         }
00586         else
00587         {
00588           G4double p1a10=2.2e-28*a10;
00589           G4double r4a16=6.e14/a16;
00590           G4double s4a16=r4a16*r4a16;
00591           // a24
00592           // a36
00593           // The main pre-exponent      (peh_sg)
00594           lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
00595           lastPAR[10]=.06*std::pow(a,.6);                    // p2
00596           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
00597           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
00598           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
00599           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
00600           // The main slope             (peh_sl)
00601           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
00602           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
00603           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
00604           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
00605           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
00606           lastPAR[20]=9.+100./a;                             // p6
00607           // The main quadratic         (peh_sh)
00608           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
00609           lastPAR[22]=7.e-15*a4*asa;                         // p2
00610           lastPAR[23]=9000./a4;                              // p3
00611           // The 1st max pre-exponent   (peh_qq)
00612           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
00613           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
00614           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
00615           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
00616           // The 1st max slope          (peh_qs)
00617           lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
00618           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
00619           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
00620           lastPAR[31]=100./asa;                              // p4
00621           // The 2nd max pre-exponent   (peh_ss)
00622           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
00623           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
00624           lastPAR[34]=1.3+3.e5/a4;                           // p3
00625           lastPAR[35]=500./(a2+50.)+3;                       // p4
00626           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
00627           // The 2nd max slope          (peh_sb)
00628           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
00629           lastPAR[38]=.0005*a5;                              // p2
00630           lastPAR[39]=.002*a5;                               // p3
00631           lastPAR[40]=10.;                                   // p4
00632           // The effective pre-exponent (peh_us)
00633           lastPAR[41]=.05+.005*a;                            // p1
00634           lastPAR[42]=7.e-8/sa;                              // p2
00635           lastPAR[43]=.8*sa;                                 // p3
00636           lastPAR[44]=.02*sa;                                // p4
00637           lastPAR[45]=1.e8/a3;                               // p5
00638           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
00639           // The effective slope        (peh_ub)
00640           lastPAR[47]=24.;                                   // p1
00641           lastPAR[48]=20./sa;                                // p2
00642           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
00643           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
00644 #ifdef debug
00645          G4cout<<"G4QElCS::CalcCS:ha "<<lastPAR[41]<<", "<<lastPAR[42]<<", "<<lastPAR[43]
00646                <<", "<<lastPAR[44]<<", "<<lastPAR[45]<<", "<<lastPAR[46]<<G4endl;
00647 #endif
00648         }
00649         // Parameter for lowEnergyNeutrons
00650         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
00651       }
00652       lastPAR[nLast]=pwd;
00653       // and initialize the zero element of the table
00654       G4double lp=lPMin;                                      // ln(momentum)
00655       G4bool memCS=onlyCS;                                    // ??
00656       onlyCS=false;
00657       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
00658       onlyCS=memCS;
00659       lastSST[0]=theSS;
00660       lastS1T[0]=theS1;
00661       lastB1T[0]=theB1;
00662       lastS2T[0]=theS2;
00663       lastB2T[0]=theB2;
00664       lastS3T[0]=theS3;
00665       lastB3T[0]=theB3;
00666       lastS4T[0]=theS4;
00667       lastB4T[0]=theB4;
00668 #ifdef debug
00669       G4cout<<"G4QPionPlusElasticCrossSection::GetPTables:ip=0(init), lp="<<lp<<",S1="
00670             <<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB3<<",S3="<<theS3
00671             <<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
00672 #endif
00673     }
00674     if(LP>ILP)
00675     {
00676       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
00677       if(ini<0) ini=0;
00678       if(ini<nPoints)
00679       {
00680         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
00681         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
00682         if(fin>=ini)
00683         {
00684           G4double lp=0.;
00685           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
00686           {
00687             lp=lPMin+ip*dlnP;                     // ln(momentum)
00688             G4bool memCS=onlyCS;
00689             onlyCS=false;
00690             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
00691             onlyCS=memCS;
00692             lastSST[ip]=theSS;
00693             lastS1T[ip]=theS1;
00694             lastB1T[ip]=theB1;
00695             lastS2T[ip]=theS2;
00696             lastB2T[ip]=theB2;
00697             lastS3T[ip]=theS3;
00698             lastB3T[ip]=theB3;
00699             lastS4T[ip]=theS4;
00700             lastB4T[ip]=theB4;
00701 #ifdef debug
00702             G4cout<<"G4QPionPlusElasticCrossSection::GetPTables:ip="<<ip<<",lp="<<lp
00703                   <<",S1="<<theS1<<",B1="<<theB1<<",S2="<<theS2<<",B2="<<theB2<<",S3="
00704                   <<theS3<<",B3="<<theB3<<",S4="<<theS4<<",B4="<<theB4<<G4endl;
00705 #endif
00706           }
00707           return lp;
00708         }
00709         else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG
00710                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
00711                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
00712       }
00713       else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="
00714                  <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
00715                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
00716     }
00717 #ifdef debug
00718     else G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetPTabl:PDG="<<PDG<<", Z="<<tgZ
00719                <<", N="<<tgN<<", LP="<<LP<<" <= ILP="<<ILP<<" nothing is done!"<<G4endl;
00720 #endif
00721   }
00722   else
00723   {
00724     // G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetPTables: PDG="<<PDG<<", Z="<<tgZ
00725     //       <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
00726     // throw G4QException("G4QPionPlusElasticCrossSection::GetPTables:only pipA implemented");
00727     G4ExceptionDescription ed;
00728     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
00729        << ", while it is defined only for PDG=211 (pi+)" << G4endl;
00730     G4Exception("G4QPionPlusElasticCrossSection::GetPTables()", "HAD_CHPS_0000",
00731                 FatalException, ed);
00732   }
00733   return ILP;
00734 }
00735 
00736 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
00737 G4double G4QPionPlusElasticCrossSection::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
00738 {
00739   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
00740   static const G4double third=1./3.;
00741   static const G4double fifth=1./5.;
00742   static const G4double sevth=1./7.;
00743 #ifdef tdebug
00744   G4cout<<"G4QPiPlElCS::GetExcT: F="<<onlyCS<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
00745 #endif
00746   if(PDG!= 211)G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetExT:PDG="<<PDG<<G4endl;
00747   if(onlyCS)G4cout<<"*Warning*G4QPionPlusElasticCrossSection::GetExchanT:onlyCS=1"<<G4endl;
00748   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
00749   G4double q2=0.;
00750   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
00751   {
00752 #ifdef tdebug
00753     G4cout<<"G4QElasticCS::GetExchangeT: TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",S2="
00754           <<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",GeV2="<<GeVSQ<<G4endl;
00755 #endif
00756     G4double E1=lastTM*theB1;
00757     G4double R1=(1.-std::exp(-E1));
00758 #ifdef tdebug
00759     G4double ts1=-std::log(1.-R1)/theB1;
00760     G4double ds1=std::fabs(ts1-lastTM)/lastTM;
00761     if(ds1>.0001)
00762       G4cout<<"*Warning*G4QElCS::GetExT:1p "<<ts1<<"#"<<lastTM<<",d="<<ds1
00763             <<",R1="<<R1<<",E1="<<E1<<G4endl;
00764 #endif
00765     G4double E2=lastTM*theB2;
00766     G4double R2=(1.-std::exp(-E2*E2*E2));
00767 #ifdef tdebug
00768     G4double ts2=std::pow(-std::log(1.-R2),.333333333)/theB2;
00769     G4double ds2=std::fabs(ts2-lastTM)/lastTM;
00770     if(ds2>.0001)
00771       G4cout<<"*Warning*G4QElCS::GetExT:2p "<<ts2<<"#"<<lastTM<<",d="<<ds2
00772             <<",R2="<<R2<<",E2="<<E2<<G4endl;
00773 #endif
00774     G4double E3=lastTM*theB3;
00775     G4double R3=(1.-std::exp(-E3));
00776 #ifdef tdebug
00777     G4double ts3=-std::log(1.-R3)/theB3;
00778     G4double ds3=std::fabs(ts3-lastTM)/lastTM;
00779     if(ds3>.0001)
00780       G4cout<<"*Warning*G4QElCS::GetExT:3p "<<ts3<<"#"<<lastTM<<",d="<<ds3
00781             <<",R3="<<R1<<",E3="<<E3<<G4endl;
00782 #endif
00783     G4double I1=R1*theS1/theB1;
00784     G4double I2=R2*theS2;
00785     G4double I3=R3*theS3;
00786     G4double I12=I1+I2;
00787     G4double rand=(I12+I3)*G4UniformRand();
00788     if     (rand<I1 )
00789     {
00790       G4double ran=R1*G4UniformRand();
00791       if(ran>1.) ran=1.;
00792       q2=-std::log(1.-ran)/theB1;
00793     }
00794     else if(rand<I12)
00795     {
00796       G4double ran=R2*G4UniformRand();
00797       if(ran>1.) ran=1.;
00798       q2=-std::log(1.-ran);
00799       if(q2<0.) q2=0.;
00800       q2=std::pow(q2,third)/theB2;
00801     }
00802     else
00803     {
00804       G4double ran=R3*G4UniformRand();
00805       if(ran>1.) ran=1.;
00806       q2=-std::log(1.-ran)/theB3;
00807     }
00808   }
00809   else
00810   {
00811     G4double a=tgZ+tgN;
00812 #ifdef tdebug
00813     G4cout<<"G4QElCS::GetExT: a="<<a<<",t="<<lastTM<<",S1="<<theS1<<",B1="<<theB1<<",SS="
00814           <<theSS<<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="
00815           <<theS4<<",B4="<<theB4<<G4endl;
00816 #endif
00817     G4double E1=lastTM*(theB1+lastTM*theSS);
00818     G4double R1=(1.-std::exp(-E1));
00819     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
00820 #ifdef tdebug
00821     G4double ts1=-std::log(1.-R1)/theB1;
00822     if(std::fabs(tss)>1.e-7) ts1=(std::sqrt(theB1*(theB1+(tss+tss)*ts1))-theB1)/tss;
00823     G4double ds1=(ts1-lastTM)/lastTM;
00824     if(ds1>.0001)
00825       G4cout<<"*Warning*G4QElCS::GetExT:1a "<<ts1<<"#"<<lastTM<<",d="<<ds1
00826             <<",R1="<<R1<<",E1="<<E1<<G4endl;
00827 #endif
00828     G4double tm2=lastTM*lastTM;
00829     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
00830     if(a>6.5)E2*=tm2;                               // for heavy nuclei
00831     G4double R2=(1.-std::exp(-E2));
00832 #ifdef tdebug
00833     G4double ts2=-std::log(1.-R2)/theB2;
00834     if(a<6.5)ts2=std::pow(ts2,third);
00835     else     ts2=std::pow(ts2,fifth);
00836     G4double ds2=std::fabs(ts2-lastTM)/lastTM;
00837     if(ds2>.0001)
00838       G4cout<<"*Warning*G4QElCS::GetExT:2a "<<ts2<<"#"<<lastTM<<",d="<<ds2
00839             <<",R2="<<R2<<",E2="<<E2<<G4endl;
00840 #endif
00841     G4double E3=lastTM*theB3;
00842     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
00843     G4double R3=(1.-std::exp(-E3));
00844 #ifdef tdebug
00845     G4double ts3=-std::log(1.-R3)/theB3;
00846     if(a>6.5)ts3=std::pow(ts3,sevth);
00847     G4double ds3=std::fabs(ts3-lastTM)/lastTM;
00848     if(ds3>.0001)
00849       G4cout<<"*Warning*G4QElCS::GetExT:3a "<<ts3<<"#"<<lastTM<<",d="<<ds3
00850             <<",R3="<<R3<<",E3="<<E3<<G4endl;
00851 #endif
00852     G4double E4=lastTM*theB4;
00853     G4double R4=(1.-std::exp(-E4));
00854 #ifdef tdebug
00855     G4double ts4=-std::log(1.-R4)/theB4;
00856     G4double ds4=std::fabs(ts4-lastTM)/lastTM;
00857     if(ds4>.0001)
00858       G4cout<<"*Warning*G4QElCS::GetExT:4a "<<ts4<<"#"<<lastTM<<",d="<<ds4
00859             <<",R4="<<R4<<",E4="<<E4<<G4endl;
00860 #endif
00861     G4double I1=R1*theS1;
00862     G4double I2=R2*theS2;
00863     G4double I3=R3*theS3;
00864     G4double I4=R4*theS4;
00865     G4double I12=I1+I2;
00866     G4double I13=I12+I3;
00867     G4double rand=(I13+I4)*G4UniformRand();
00868 #ifdef tdebug
00869     G4cout<<"G4QElCS::GtExT:1="<<I1<<",2="<<I2<<",3="<<I3<<",4="<<I4<<",r="<<rand<<G4endl;
00870 #endif
00871     if(rand<I1)
00872     {
00873       G4double ran=R1*G4UniformRand();
00874       if(ran>1.) ran=1.;
00875       q2=-std::log(1.-ran)/theB1;
00876       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
00877 #ifdef tdebug
00878       G4cout<<"G4QElCS::GetExT:Q2="<<q2<<",ss="<<tss/2<<",b1="<<theB1<<",t1="<<ts1<<G4endl;
00879 #endif
00880     }
00881     else if(rand<I12)
00882     {
00883       G4double ran=R2*G4UniformRand();
00884       if(ran>1.) ran=1.;
00885       q2=-std::log(1.-ran)/theB2;
00886       if(q2<0.) q2=0.;
00887       if(a<6.5) q2=std::pow(q2,third);
00888       else      q2=std::pow(q2,fifth);
00889 #ifdef tdebug
00890       G4cout<<"G4QElCS::GetExT: Q2="<<q2<<", r2="<<R2<<", b2="<<theB2<<",t2="<<ts2<<G4endl;
00891 #endif
00892     }
00893     else if(rand<I13)
00894     {
00895       G4double ran=R3*G4UniformRand();
00896       if(ran>1.) ran=1.;
00897       q2=-std::log(1.-ran)/theB3;
00898       if(q2<0.) q2=0.;
00899       if(a>6.5) q2=std::pow(q2,sevth);
00900 #ifdef tdebug
00901       G4cout<<"G4QElCS::GetExT:Q2="<<q2<<", r3="<<R2<<", b3="<<theB2<<",t3="<<ts2<<G4endl;
00902 #endif
00903     }
00904     else
00905     {
00906       G4double ran=R4*G4UniformRand();
00907       if(ran>1.) ran=1.;
00908       q2=-std::log(1.-ran)/theB4;
00909       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
00910 #ifdef tdebug
00911       G4cout<<"G4QElCS::GetExT:Q2="<<q2<<",m="<<lastTM<<",b4="<<theB3<<",t4="<<ts3<<G4endl;
00912 #endif
00913     }
00914   }
00915   if(q2<0.) q2=0.;
00916   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
00917   if(q2>lastTM)
00918   {
00919 #ifdef tdebug
00920     G4cout<<"*Warning*G4QElasticCrossSect::GetExT:-t="<<q2<<">"<<lastTM<<G4endl;
00921 #endif
00922     q2=lastTM;
00923   }
00924   return q2*GeVSQ;
00925 }
00926 
00927 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
00928 G4double G4QPionPlusElasticCrossSection::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
00929 {
00930   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
00931 #ifdef tdebug
00932   G4cout<<"G4QElasticCS::GetSlope:"<<onlyCS<<", Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
00933 #endif
00934   if(onlyCS)G4cout<<"Warning*G4QPionPlusElasticCrossSection::GetSlope:onlyCS=true"<<G4endl;
00935   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
00936   if(PDG != 211)
00937   {
00938     // G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetSlope: PDG="<<PDG<<", Z="<<tgZ
00939     //       <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
00940     // throw G4QException("G4QPionPlusElasticCrossSection::GetSlope: pipA are implemented");
00941     G4ExceptionDescription ed;
00942     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
00943        << ", while it is defined only for PDG=211 (pi-)" << G4endl;
00944     G4Exception("G4QPionPlusElasticCrossSection::GetSlope()", "HAD_CHPS_000",
00945                 FatalException, ed);
00946   }
00947   if(theB1<0.) theB1=0.;
00948   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
00949   return theB1/GeVSQ;
00950 }
00951 
00952 // Returns half max(Q2=-t) in independent units (MeV^2)
00953 G4double G4QPionPlusElasticCrossSection::GetHMaxT()
00954 {
00955   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
00956   return lastTM*HGeVSQ;
00957 }
00958 
00959 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
00960 G4double G4QPionPlusElasticCrossSection::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
00961                                                     G4int tgN)
00962 {
00963   if(PDG!= 211)G4cout<<"Warning*G4QPionPlusElasticCrossSection::GetTabV:PDG="<<PDG<<G4endl;
00964   if(tgZ<0 || tgZ>92)
00965   {
00966     G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
00967     return 0.;
00968   }
00969   G4int iZ=tgZ-1; // Z index
00970   if(iZ<0)
00971   {
00972     iZ=0;         // conversion of the neutron target to the proton target
00973     tgZ=1;
00974     tgN=0;
00975   }
00976   //if(nN[iZ][0] < 0)
00977   //{
00978 #ifdef isodebug
00979   //  G4cout<<"*Warning*G4QElasticCS::GetTabValue: No isotopes for Z="<<tgZ<<G4endl;
00980 #endif
00981   //  return 0.;
00982   //}
00983 #ifdef debug
00984   G4cout<<"G4QElasticCS::GetTabVal: lp="<<lp<<",Z="<<tgZ<<",N="<<tgN<<",PDG="<<PDG<<G4endl;
00985 #endif
00986   G4double p=std::exp(lp);              // momentum
00987   G4double sp=std::sqrt(p);             // sqrt(p)
00988   G4double p2=p*p;
00989   G4double p3=p2*p;
00990   G4double p4=p2*p2;
00991   if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
00992   {
00993     G4double dl2=lp-lastPAR[11];
00994     theSS=lastPAR[34];
00995     theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
00996           (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
00997     theB1=lastPAR[18]*std::pow(p,lastPAR[19])/(1.+lastPAR[20]/p3);
00998     theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
00999     theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp); 
01000     theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
01001     theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]); 
01002     theS4=0.;
01003     theB4=0.; 
01004 #ifdef tdebug
01005     G4cout<<"G4QElasticCS::GetTableValues:(pp) TM="<<lastTM<<",S1="<<theS1<<",B1="<<theB1
01006           <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS1<<",B3="<<theB1<<G4endl;
01007 #endif
01008     // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
01009     G4double dl1=lp+lastPAR[0];  // lr
01010     G4double lr2=dl1*dl1;        // lr2
01011     G4double dl3=lp-lastPAR[3];  // ld
01012     G4double dl4=lp-lastPAR[4];  // lm
01013     return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
01014            lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
01015   }
01016   else
01017   {
01018     G4double p5=p4*p;
01019     G4double p6=p5*p;
01020     G4double p8=p6*p2;
01021     G4double p10=p8*p2;
01022     G4double p12=p10*p2;
01023     G4double p16=p8*p8;
01024     //G4double p24=p16*p8;
01025     G4double dl=lp-5.;
01026     G4double a=tgZ+tgN;
01027     G4double pah=std::pow(p,a/2);
01028     G4double pa=pah*pah;
01029     G4double pa2=pa*pa;
01030     if(a<6.5)
01031     {
01032       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
01033             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
01034       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
01035       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
01036       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
01037       theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
01038       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
01039       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
01040       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
01041                 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
01042       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
01043 #ifdef tdebug
01044       G4cout<<"G4QElCS::GetTabV: lA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
01045             <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
01046             <<",B4="<<theB4<<G4endl;
01047 #endif
01048     }
01049     else
01050     {
01051       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
01052             lastPAR[13]/(p5+lastPAR[14]/p16);
01053       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
01054             lastPAR[17]/(1.+lastPAR[18]/p4);
01055       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
01056       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
01057       theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
01058       theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
01059             lastPAR[33]/(1.+lastPAR[34]/p6);
01060       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
01061       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
01062             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
01063       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
01064 #ifdef tdebug
01065       G4cout<<"G4QElCS::GetTabV: hA, p="<<p<<",S1="<<theS1<<",B1="<<theB1<<",SS="<<theSS
01066             <<",S2="<<theS2<<",B2="<<theB2<<",S3="<<theS3<<",B3="<<theB3<<",S4="<<theS4
01067             <<",B4="<<theB4<<G4endl;
01068 #endif
01069     }
01070     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
01071 #ifdef tdebug
01072     G4cout<<"G4QElCS::GetTabV: PDG="<<PDG<<",P="<<p<<",N="<<tgN<<",Z="<<tgZ<<G4endl;
01073 #endif
01074     //         p1               p2              p3
01075     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
01076            lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
01077     //        p4             p5               p7           p8
01078   }
01079   return 0.;
01080 } // End of GetTableValues
01081 
01082 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
01083 G4double G4QPionPlusElasticCrossSection::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
01084                                                 G4double pP)
01085 {
01086   //static const G4double mNeut= G4QPDGCode(2112).GetMass()*.001; // MeV to GeV
01087   static const G4double mPi= G4QPDGCode(211).GetMass()*.001; // pion mass MeV to GeV
01088   //static const G4double mProt= G4QPDGCode(2212).GetMass()*.001; // MeV to GeV
01089   //static const G4double mLamb= G4QPDGCode(3122).GetMass()*.001; // MeV to GeV
01090   //static const G4double mHe3 = G4QPDGCode(2112).GetNuclMass(2,1,0)*.001; // MeV to GeV
01091   //static const G4double mAlph = G4QPDGCode(2112).GetNuclMass(2,2,0)*.001; // MeV to GeV
01092   //static const G4double mDeut = G4QPDGCode(2112).GetNuclMass(1,1,0)*.001; // MeV to GeV
01093   static const G4double mPi2= mPi*mPi;
01094   //static const G4double mProt2= mProt*mProt;
01095   //static const G4double mNeut2= mNeut*mNeut;
01096   //static const G4double mDeut2= mDeut*mDeut;
01097   G4double pP2=pP*pP;                                 // squared momentum of the projectile
01098   if(tgZ || tgN>-1)                                   // ---> pipA
01099   {
01100     G4double mt=G4QPDGCode(90000000+tgZ*1000+tgN).GetMass()*.001; // Target mass in GeV
01101     G4double dmt=mt+mt;
01102     G4double s_value=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt;    // Mondelstam s
01103     return dmt*dmt*pP2/s_value;
01104   }
01105   else
01106   {
01107     // G4cout<<"*Error*G4QPionPlusElasticCrossSection::GetQ2max:PDG="<<PDG<<", Z="<<tgZ<<",N="
01108     //       <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
01109     // throw G4QException("G4QPionPlusElasticCrossSection::GetQ2max: only pipA implemented");
01110     G4ExceptionDescription ed;
01111     ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN
01112        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
01113     G4Exception("G4QPionPlusElasticCrossSection::GetQ2max()", "HAD_CHPS_0000",
01114                 FatalException, ed);
01115     return 0;
01116   }
01117 }

Generated on Mon May 27 17:49:39 2013 for Geant4 by  doxygen 1.4.7