G4QInelastic.hh

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 //      ---------------- G4QInelastic header ----------------
00029 //                 by Mikhail Kossov, December 2003.
00030 //  Header of G4QInelastic class (all particles) of the CHIPS Physics Pachage in GEANT4
00031 // ------------------------------------------------------------------------------------
00032 // This is a unique CHIPS class for the Hadron-Nuclear Inelastic Interaction Prosesses.
00033 // ------------------------------------------------------------------------------------
00034 // At present (Dec.04) only pi+/-, K+/- proton, neutron, antiproton and antineutron
00035 // collisions with protons are implemented, which are fundamental for the in matter
00036 // simulation of hadronic reactions. The interactions of the same particles with
00037 // nuclei are implemented only for the low energy (below 1 GeV) nucleon-nuclear
00038 // reactions only. The collisions of nuclei with nuclei are planned for the near future.
00039 // The simulation is based on the G4QuasmonString class, which extends the CHIPS model
00040 // to the highest energyes, implementing the Quasmon string with the
00041 // String->Quasmons->Hadrons scenario of the quark-gluon string fragmentation
00042 // --> CHIPS is a SU(3) event generator, so it does not include reactions with the
00043 // heavy c,b,t-quarks, which can be simulated only by the SU(6) QUIPS (QUark Invariant
00044 // Phase Space) model which is an expantion of the CHIPS.- May 2009, M.Kossov.-
00045 // --------------------------------------------------------------------------------------
00046 // Algorithms: the vacuum interactions in CHIPS are described by the quark exchange (QE)
00047 // process. The first step is the low energy quark exchange. If as a result of the QE one
00048 // or both secondary hadrons are below the pi0 threshold (roughly) they are pushed to the
00049 // Ground State (GS) value(s). The excited (above the pi0 production threshold) hadronic
00050 // state is considered as a Quasmon, which is filled in the G4QuasmonVector of the
00051 // G4QuasmonString class. On the second step all G4Quasmons are decayed by the
00052 // G4Quasmon class and fill the G4QHadronVector output. If the exchange quark is too far
00053 // in the rapidity space (a parameter of the G4QuasmonString class) from any of the quarks
00054 // of the other hadron it creates a string with the nearest in the rapidity space quark.
00055 // This string is converted into a Quasmon. This forces the coalescence of the residuals
00056 // to create another Quasmon, while the possibility exists to create more residual
00057 // Quasmons instead of one - one per each target-quark+projectile-antiquark(diquark) pair.
00058 // This possibility is tuned by the Drell-Yan pair production process. If the target (or
00059 // pojectile) is a nucleus, then the Quasmons are created not only in vacuum, where they
00060 // can be fragmented by the G4Quasmon class, but in nuclear matter of the residual target
00061 // (or projectile). If the Quasmons are created in nuclear matter, they are fragmented by
00062 // the G4QEnvironment class with the subsequent Quark Exchange nuclear fragmentation.
00063 // This is the present general scenario.- May 2009, Mikhail Kossov.-
00064 // --------------------------------------------------------------------------------
00065 // ****************************************************************************************
00066 // This Header is a part of the CHIPS Physics Package (author: M. Kosov)
00067 // ****************************************************************************************
00068 // Short description: This is a universal class for the incoherent (inelastic)
00069 // nuclear interactions within the framework of the CHIPS model.
00070 // ---------------------------------------------------------------------------
00071 
00072 #ifndef G4QInelastic_hh
00073 #define G4QInelastic_hh
00074 
00075 // GEANT4 Headers
00076 #include "globals.hh"
00077 #include "G4ios.hh"
00078 #include "Randomize.hh" 
00079 #include "G4QThd.hh"
00080 #include "G4VDiscreteProcess.hh"
00081 #include "G4Track.hh"
00082 #include "G4Step.hh"
00083 #include "G4ParticleTypes.hh"
00084 #include "G4VParticleChange.hh"
00085 #include "G4ParticleDefinition.hh"
00086 #include "G4DynamicParticle.hh"
00087 #include "G4ThreeVector.hh"
00088 #include "G4LorentzVector.hh"
00089 #include "G4RandomDirection.hh"
00090 
00091 // CHIPS Headers
00092 #include "G4QEnvironment.hh"
00093 #include "G4VQCrossSection.hh"
00094 #include "G4QIsotope.hh"
00095 #include "G4QProtonNuclearCrossSection.hh"
00096 #include "G4QPionMinusNuclearCrossSection.hh"
00097 #include "G4QPionPlusNuclearCrossSection.hh"
00098 #include "G4QKaonPlusNuclearCrossSection.hh"
00099 #include "G4QKaonMinusNuclearCrossSection.hh"
00100 #include "G4QKaonZeroNuclearCrossSection.hh"
00101 #include "G4QHyperonNuclearCrossSection.hh"
00102 #include "G4QHyperonPlusNuclearCrossSection.hh"
00103 #include "G4QAntiBaryonPlusNuclearCrossSection.hh"
00104 #include "G4QAntiBaryonNuclearCrossSection.hh"
00105 #include "G4QPhotonNuclearCrossSection.hh"
00106 #include "G4QElectronNuclearCrossSection.hh"
00107 #include "G4QMuonNuclearCrossSection.hh"
00108 #include "G4QTauNuclearCrossSection.hh"
00109 #include "G4QNuMuNuclearCrossSection.hh"
00110 #include "G4QANuMuNuclearCrossSection.hh"
00111 #include "G4QNuENuclearCrossSection.hh"
00112 #include "G4QANuENuclearCrossSection.hh"
00113 #include "G4QNuNuNuclearCrossSection.hh"
00114 #include "G4QANuANuNuclearCrossSection.hh"
00115 #include "G4QNeutronNuclearCrossSection.hh"
00116 #include "G4QNeutronCaptureRatio.hh"
00117 #include "G4QIonIonCollision.hh"
00118 #include "G4QFragmentation.hh"
00119 #include "G4QuasiFreeRatios.hh"
00120 #include "G4QPDGToG4Particle.hh"
00121 
00122 class G4QInelastic : public G4VDiscreteProcess
00123 {
00124 public:
00125 
00126   // Constructor
00127   G4QInelastic(const G4String& processName ="CHIPS_Inelastic");
00128 
00129   // Destructor
00130   ~G4QInelastic();
00131 
00132   G4bool IsApplicable(const G4ParticleDefinition& particle);
00133 
00134   G4double GetMeanFreePath(const G4Track& aTrack, G4double previousStepSize,
00135                            G4ForceCondition* condition);
00136   // It returns the MeanFreePath of the process for the current track :
00137   // (energy, material)
00138   // The previousStepSize and G4ForceCondition* are not used.
00139   // This function overloads a virtual function of the base class.        
00140   // It is invoked by the ProcessManager of the Particle.
00141  
00142 
00143   G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep); 
00144   // It computes the final state of the process (at end of step),
00145   // returned as a ParticleChange object.       
00146   // This function overloads a virtual function of the base class.
00147   // It is invoked by the ProcessManager of the Particle.
00148 
00149   // Fake void functions
00150   void SetPhysicsTableBining(G4double, G4double, G4int) {;}
00151   void BuildPhysicsTable(const G4ParticleDefinition&) {;}
00152   void PrintInfoDefinition() {;}
00153 
00154   // Internal Energy-Momentum Residual
00155   G4LorentzVector GetEnegryMomentumConservation();
00156 
00157   // Number of neutrons in the target nucleus (primary)
00158   G4int GetNumberOfNeutronsInTarget();
00159 
00160   // Static functions ---------------------------------------------------------------------
00161   static void SetManual();
00162   static void SetStandard();
00163   static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3,
00164                             G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1.,
00165                             G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false,
00166                             G4double piTh=141.4,G4double mpi2=20000.,G4double dinum=1880.);
00167   static void SetPhotNucBias(G4double phnB=1.);
00168   static void SetWeakNucBias(G4double ccnB=1.);
00169   //--- End of static member functions ----------------------------------------------------
00170 
00171   G4double GetPhotNucBias(){return photNucBias;}
00172   G4double GetWeakNucBias(){return weakNucBias;}
00173 
00174 private:
00175 
00176   // Hide assignment operator as private 
00177   G4QInelastic& operator=(const G4QInelastic &right);
00178 
00179   // Copy constructor
00180   G4QInelastic(const G4QInelastic&);
00181 
00182   // Random direction in two dimentions pair(first=sin(phi), second=cos(phi))
00183   std::pair<G4double,G4double> Random2DDirection();
00184 
00185   // BODY
00186   // Static Parameters --------------------------------------------------------------------
00187   static G4bool   manualFlag;  // If false then standard parameters are used
00188   static G4int    nPartCWorld; // The#of particles for hadronization (limit of A of fragm.)
00189   // -> Parameters of the G4Quasmon class:
00190   static G4double Temperature; // Quasmon Temperature
00191   static G4double SSin2Gluons; // Percent of ssbar sea in a constituen gluon
00192   static G4double EtaEtaprime; // Part of eta-prime in all etas
00193   // -> Parameters of the G4QNucleus class:
00194   static G4double freeNuc;     // probability of the quasi-free baryon on surface
00195   static G4double freeDib;     // probability of the quasi-free dibaryon on surface
00196   static G4double clustProb;   // clusterization probability in dense region
00197   static G4double mediRatio;   // relative vacuum hadronization probability
00198   // -> Parameters of the G4QEnvironment class:
00199   static G4bool   EnergyFlux;  // Flag for Energy Flux use instead of Multy Quasmon
00200   static G4double SolidAngle;  // Part of Solid Angle to capture secondaries(@@A-dep)
00201   static G4double PiPrThresh;  // Pion Production Threshold for gammas
00202   static G4double M2ShiftVir;  // Shift for M2=-Q2=m_pi^2 of the virtual gamma
00203   static G4double DiNuclMass;  // Double Nucleon Mass for virtual normalization
00204   // -> Biasing parameters:
00205   static G4double photNucBias; // Biasing parameter for photo-($e,mu,tau)Nuclear reactions
00206   static G4double weakNucBias; // Biasing parameter for Charged Currents (nu,mu) reactions
00207   //--------------------------------- End of static parameters ---------------------------
00208   // Working parameters
00209   G4VQCrossSection* theCS;
00210   G4LorentzVector EnMomConservation;                  // Residual of Energy/Momentum Cons.
00211   G4int nOfNeutrons;                                  // #of neutrons in the target nucleus
00212 
00213   // Modifires for the reaction
00214   G4double Time;                                      // Time shift of the capture reaction
00215   G4double EnergyDeposition;                          // Energy deposited in the reaction
00216   static std::vector <G4int> ElementZ;                // Z of the element(i) in theLastCalc
00217   static std::vector <G4double> ElProbInMat;          // SumProbabilityElements in Material
00218   static std::vector <std::vector<G4int>*> ElIsoN;    // N of isotope(j) of Element(i)
00219   static std::vector <std::vector<G4double>*> IsoProbInEl;// SumProbabIsotopes in Element i
00220 };
00221 #endif

Generated on Mon May 27 17:49:35 2013 for Geant4 by  doxygen 1.4.7