G4LivermoreGammaConversionModel.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // Author: Sebastien Incerti
00027 //         22 January 2012
00028 //         on base of G4LivermoreGammaConversionModel
00029 
00030 #include "G4LivermoreGammaConversionModel.hh"
00031 #include "G4PhysicalConstants.hh"
00032 #include "G4SystemOfUnits.hh"
00033 
00034 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00035 
00036 using namespace std;
00037 
00038 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00039 
00040 G4LivermoreGammaConversionModel::G4LivermoreGammaConversionModel(const G4ParticleDefinition*,
00041                                                                  const G4String& nam)
00042 :G4VEmModel(nam),smallEnergy(2.*MeV),isInitialised(false),maxZ(99)
00043 {
00044   fParticleChange = 0;
00045 
00046   lowEnergyLimit = 2.0*electron_mass_c2;
00047   data.resize(maxZ+1,0); 
00048          
00049   verboseLevel= 0;
00050   // Verbosity scale for debugging purposes:
00051   // 0 = nothing 
00052   // 1 = calculation of cross sections, file openings...
00053   // 2 = entering in methods
00054 
00055   if(verboseLevel > 0) 
00056   {
00057     G4cout << "G4LivermoreGammaConversionModel is constructed " << G4endl;
00058   }
00059 }
00060 
00061 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00062 
00063 G4LivermoreGammaConversionModel::~G4LivermoreGammaConversionModel()
00064 {  
00065   for(G4int i=0; i<=maxZ; ++i) { delete data[i]; }
00066 }
00067 
00068 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00069 
00070 void 
00071 G4LivermoreGammaConversionModel::Initialise(const G4ParticleDefinition* particle,
00072                                             const G4DataVector& cuts)
00073 {
00074   if (verboseLevel > 1) 
00075   {
00076     G4cout << "Calling Initialise() of G4LivermoreGammaConversionModel." << G4endl
00077            << "Energy range: "
00078            << LowEnergyLimit() / MeV << " MeV - "
00079            << HighEnergyLimit() / GeV << " GeV"
00080            << G4endl;
00081   }
00082 
00083   // Initialise element selector
00084   
00085   InitialiseElementSelectors(particle, cuts);
00086 
00087   // Access to elements
00088   
00089   char* path = getenv("G4LEDATA");
00090 
00091   G4ProductionCutsTable* theCoupleTable =
00092     G4ProductionCutsTable::GetProductionCutsTable();
00093   G4int numOfCouples = theCoupleTable->GetTableSize();
00094   
00095   for(G4int i=0; i<numOfCouples; ++i) 
00096   {
00097     const G4Material* material = 
00098       theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
00099     const G4ElementVector* theElementVector = material->GetElementVector();
00100     G4int nelm = material->GetNumberOfElements();
00101     
00102     for (G4int j=0; j<nelm; ++j) 
00103     {
00104         
00105       G4int Z = (G4int)(*theElementVector)[j]->GetZ();
00106       if(Z < 1)          { Z = 1; }
00107       else if(Z > maxZ)  { Z = maxZ; }
00108       if(!data[Z]) { ReadData(Z, path); }
00109     }
00110   }
00111   //
00112   
00113   if(isInitialised) { return; }
00114   fParticleChange = GetParticleChangeForGamma();
00115   isInitialised = true;
00116 }
00117 
00118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00119 
00120 void G4LivermoreGammaConversionModel::ReadData(size_t Z, const char* path)
00121 {
00122   if (verboseLevel > 1) 
00123   {
00124     G4cout << "Calling ReadData() of G4LivermoreGammaConversionModel" 
00125            << G4endl;
00126   }
00127 
00128   if(data[Z]) { return; }
00129   
00130   const char* datadir = path;
00131 
00132   if(!datadir) 
00133   {
00134     datadir = getenv("G4LEDATA");
00135     if(!datadir) 
00136     {
00137       G4Exception("G4LivermoreGammaConversionModel::ReadData()",
00138                   "em0006",FatalException,
00139                   "Environment variable G4LEDATA not defined");
00140       return;
00141     }
00142   }
00143 
00144   //
00145   
00146   data[Z] = new G4LPhysicsFreeVector();
00147   
00148   // Activation of spline interpolation
00149   data[Z] ->SetSpline(true);
00150   //
00151   
00152   std::ostringstream ost;
00153   ost << datadir << "/livermore/pair/pp-cs-" << Z <<".dat";
00154   std::ifstream fin(ost.str().c_str());
00155   
00156   if( !fin.is_open()) 
00157   {
00158     G4ExceptionDescription ed;
00159     ed << "G4LivermoreGammaConversionModel data file <" << ost.str().c_str()
00160        << "> is not opened!" << G4endl;
00161     G4Exception("G4LivermoreGammaConversionModel::ReadData()",
00162                 "em0003",FatalException,
00163                 ed,"G4LEDATA version should be G4EMLOW6.27 or later.");
00164     return;
00165   } 
00166   
00167   else 
00168   {
00169     
00170     if(verboseLevel > 3) { G4cout << "File " << ost.str() 
00171              << " is opened by G4LivermoreGammaConversionModel" << G4endl;}
00172     
00173     data[Z]->Retrieve(fin, true);
00174   } 
00175   
00176   
00177 }
00178 
00179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00180 
00181 G4double 
00182 G4LivermoreGammaConversionModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
00183                                                             G4double GammaEnergy,
00184                                                             G4double Z, G4double,
00185                                                             G4double, G4double)
00186 {
00187   if (verboseLevel > 1) 
00188   {
00189     G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreGammaConversionModel" 
00190            << G4endl;
00191   }
00192 
00193   if (GammaEnergy < lowEnergyLimit) { return 0.0; } 
00194 
00195   G4double xs = 0.0;
00196   
00197   G4int intZ=G4int(Z);
00198 
00199   if(intZ < 1 || intZ > maxZ) { return xs; }
00200 
00201   G4LPhysicsFreeVector* pv = data[intZ];
00202 
00203   // element was not initialised
00204   if(!pv) 
00205   {
00206     char* path = getenv("G4LEDATA");
00207     ReadData(intZ, path);
00208     pv = data[intZ];
00209     if(!pv) { return xs; }
00210   }
00211   // x-section is taken from the table
00212   xs = pv->Value(GammaEnergy); 
00213 
00214   if(verboseLevel > 0)
00215   {
00216     G4int n = pv->GetVectorLength() - 1;
00217     G4cout  <<  "****** DEBUG: tcs value for Z=" << Z << " at energy (MeV)=" << GammaEnergy/MeV << G4endl;
00218     G4cout  <<  "  cs (Geant4 internal unit)=" << xs << G4endl;
00219     G4cout  <<  "    -> first cs value in EADL data file (iu) =" << (*pv)[0] << G4endl;
00220     G4cout  <<  "    -> last  cs value in EADL data file (iu) =" << (*pv)[n] << G4endl;
00221     G4cout  <<  "*********************************************************" << G4endl;
00222   }
00223 
00224   return xs;
00225 
00226 }
00227 
00228 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00229 
00230 void G4LivermoreGammaConversionModel::SampleSecondaries(
00231                                  std::vector<G4DynamicParticle*>* fvect,
00232                                  const G4MaterialCutsCouple* couple,
00233                                  const G4DynamicParticle* aDynamicGamma,
00234                                  G4double, G4double)
00235 {
00236 
00237 // The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
00238 // cross sections with Coulomb correction. A modified version of the random
00239 // number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
00240 
00241 // Note 1 : Effects due to the breakdown of the Born approximation at low
00242 // energy are ignored.
00243 // Note 2 : The differential cross section implicitly takes account of
00244 // pair creation in both nuclear and atomic electron fields. However triplet
00245 // prodution is not generated.
00246 
00247   if (verboseLevel > 1)
00248     G4cout << "Calling SampleSecondaries() of G4LivermoreGammaConversionModel" << G4endl;
00249 
00250   G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
00251   G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
00252 
00253   G4double epsilon ;
00254   G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
00255 
00256   // Do it fast if photon energy < 2. MeV
00257   if (photonEnergy < smallEnergy )
00258   {
00259     epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
00260   }
00261   else
00262   {
00263     // Select randomly one element in the current material
00264 
00265     const G4ParticleDefinition* particle =  aDynamicGamma->GetDefinition();
00266     const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
00267 
00268     if (element == 0)
00269       {
00270         G4cout << "G4LivermoreGammaConversionModel::SampleSecondaries - element = 0" 
00271                << G4endl;
00272         return;
00273       }
00274     G4IonisParamElm* ionisation = element->GetIonisation();
00275     if (ionisation == 0)
00276       {
00277         G4cout << "G4LivermoreGammaConversionModel::SampleSecondaries - ionisation = 0" 
00278                << G4endl;
00279         return;
00280       }
00281 
00282     // Extract Coulomb factor for this Element
00283     G4double fZ = 8. * (ionisation->GetlogZ3());
00284     if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
00285 
00286     // Limits of the screening variable
00287     G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
00288     G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
00289     G4double screenMin = std::min(4.*screenFactor,screenMax) ;
00290 
00291     // Limits of the energy sampling
00292     G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
00293     G4double epsilonMin = std::max(epsilon0Local,epsilon1);
00294     G4double epsilonRange = 0.5 - epsilonMin ;
00295 
00296     // Sample the energy rate of the created electron (or positron)
00297     G4double screen;
00298     G4double gReject ;
00299 
00300     G4double f10 = ScreenFunction1(screenMin) - fZ;
00301     G4double f20 = ScreenFunction2(screenMin) - fZ;
00302     G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
00303     G4double normF2 = std::max(1.5 * f20,0.);
00304 
00305     do 
00306       {
00307         if (normF1 / (normF1 + normF2) > G4UniformRand() )
00308           {
00309             epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.333333) ;
00310             screen = screenFactor / (epsilon * (1. - epsilon));
00311             gReject = (ScreenFunction1(screen) - fZ) / f10 ;
00312           }
00313         else
00314           {
00315             epsilon = epsilonMin + epsilonRange * G4UniformRand();
00316             screen = screenFactor / (epsilon * (1 - epsilon));
00317             gReject = (ScreenFunction2(screen) - fZ) / f20 ;
00318           }
00319       } while ( gReject < G4UniformRand() );
00320     
00321   }   //  End of epsilon sampling
00322 
00323   // Fix charges randomly
00324 
00325   G4double electronTotEnergy;
00326   G4double positronTotEnergy;
00327 
00328   if (G4UniformRand() > 0.5)
00329     {
00330       electronTotEnergy = (1. - epsilon) * photonEnergy;
00331       positronTotEnergy = epsilon * photonEnergy;
00332     }
00333   else
00334     {
00335       positronTotEnergy = (1. - epsilon) * photonEnergy;
00336       electronTotEnergy = epsilon * photonEnergy;
00337     }
00338 
00339   // Scattered electron (positron) angles. ( Z - axis along the parent photon)
00340   // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
00341   // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
00342 
00343   G4double u;
00344   const G4double a1 = 0.625;
00345   G4double a2 = 3. * a1;
00346   //  G4double d = 27. ;
00347 
00348   //  if (9. / (9. + d) > G4UniformRand())
00349   if (0.25 > G4UniformRand())
00350     {
00351       u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
00352     }
00353   else
00354     {
00355       u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
00356     }
00357 
00358   G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
00359   G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
00360   G4double phi  = twopi * G4UniformRand();
00361 
00362   G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
00363   G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
00364   
00365   
00366   // Kinematics of the created pair:
00367   // the electron and positron are assumed to have a symetric angular 
00368   // distribution with respect to the Z axis along the parent photon
00369   
00370   G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
00371   
00372   G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
00373   electronDirection.rotateUz(photonDirection);
00374       
00375   G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(),
00376                                                         electronDirection,
00377                                                         electronKineEnergy);
00378 
00379   // The e+ is always created 
00380   G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
00381 
00382   G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
00383   positronDirection.rotateUz(photonDirection);   
00384   
00385   // Create G4DynamicParticle object for the particle2 
00386   G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(),
00387                                                        positronDirection, 
00388                                                        positronKineEnergy);
00389   // Fill output vector
00390   fvect->push_back(particle1);
00391   fvect->push_back(particle2);
00392 
00393   // kill incident photon
00394   fParticleChange->SetProposedKineticEnergy(0.);
00395   fParticleChange->ProposeTrackStatus(fStopAndKill);   
00396 
00397 }
00398 
00399 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00400 
00401 G4double 
00402 G4LivermoreGammaConversionModel::ScreenFunction1(G4double screenVariable)
00403 {
00404   // Compute the value of the screening function 3*phi1 - phi2
00405 
00406   G4double value;
00407   
00408   if (screenVariable > 1.)
00409     value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
00410   else
00411     value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
00412   
00413   return value;
00414 } 
00415 
00416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
00417 
00418 G4double 
00419 G4LivermoreGammaConversionModel::ScreenFunction2(G4double screenVariable)
00420 {
00421   // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
00422   
00423   G4double value;
00424   
00425   if (screenVariable > 1.)
00426     value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
00427   else
00428     value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
00429   
00430   return value;
00431 } 
00432 

Generated on Mon May 27 17:48:48 2013 for Geant4 by  doxygen 1.4.7