G4ComponentGGHadronNucleusXsc.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // author: V. Grichine
00027 // 
00028 // 25.04.12 V. Grichine - first implementation
00029 
00030 #include "G4ComponentGGHadronNucleusXsc.hh"
00031 
00032 #include "G4PhysicalConstants.hh"
00033 #include "G4SystemOfUnits.hh"
00034 #include "G4ParticleTable.hh"
00035 #include "G4IonTable.hh"
00036 #include "G4ParticleDefinition.hh"
00037 #include "G4DynamicParticle.hh"
00038 #include "G4HadronNucleonXsc.hh"
00039 
00040 
00042 //
00043 
00044 G4ComponentGGHadronNucleusXsc::G4ComponentGGHadronNucleusXsc() 
00045  : G4VComponentCrossSection("Glauber-Gribov"),
00046    fUpperLimit(100000*GeV), fLowerLimit(10.*MeV),// fLowerLimit(3*GeV),
00047    fRadiusConst(1.08*fermi),  // 1.1, 1.3 ?
00048    fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
00049    fDiffractionXsc(0.0), fHadronNucleonXsc(0.0)
00050 {
00051   theGamma    = G4Gamma::Gamma();
00052   theProton   = G4Proton::Proton();
00053   theNeutron  = G4Neutron::Neutron();
00054   theAProton  = G4AntiProton::AntiProton();
00055   theANeutron = G4AntiNeutron::AntiNeutron();
00056   thePiPlus   = G4PionPlus::PionPlus();
00057   thePiMinus  = G4PionMinus::PionMinus();
00058   thePiZero   = G4PionZero::PionZero();
00059   theKPlus    = G4KaonPlus::KaonPlus();
00060   theKMinus   = G4KaonMinus::KaonMinus();
00061   theK0S      = G4KaonZeroShort::KaonZeroShort();
00062   theK0L      = G4KaonZeroLong::KaonZeroLong();
00063   theL        = G4Lambda::Lambda();
00064   theAntiL    = G4AntiLambda::AntiLambda();
00065   theSPlus    = G4SigmaPlus::SigmaPlus();
00066   theASPlus   = G4AntiSigmaPlus::AntiSigmaPlus();
00067   theSMinus   = G4SigmaMinus::SigmaMinus();
00068   theASMinus  = G4AntiSigmaMinus::AntiSigmaMinus();
00069   theS0       = G4SigmaZero::SigmaZero();
00070   theAS0      = G4AntiSigmaZero::AntiSigmaZero();
00071   theXiMinus  = G4XiMinus::XiMinus();
00072   theXi0      = G4XiZero::XiZero();
00073   theAXiMinus = G4AntiXiMinus::AntiXiMinus();
00074   theAXi0     = G4AntiXiZero::AntiXiZero();
00075   theOmega    = G4OmegaMinus::OmegaMinus();
00076   theAOmega   = G4AntiOmegaMinus::AntiOmegaMinus();
00077   theD        = G4Deuteron::Deuteron();
00078   theT        = G4Triton::Triton();
00079   theA        = G4Alpha::Alpha();
00080   theHe3      = G4He3::He3();
00081 
00082   hnXsc = new G4HadronNucleonXsc();
00083 }
00084 
00086 //
00087 //
00088 
00089 G4ComponentGGHadronNucleusXsc::~G4ComponentGGHadronNucleusXsc()
00090 {
00091   if (hnXsc) delete hnXsc;
00092 }
00093 
00095 
00096 G4double G4ComponentGGHadronNucleusXsc::GetTotalIsotopeCrossSection(const G4ParticleDefinition* aParticle,
00097                                        G4double kinEnergy,
00098                                        G4int Z, G4int A)
00099 {
00100   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00101                                                 kinEnergy);
00102   fTotalXsc = GetIsoCrossSection(aDP, Z, A);
00103   delete aDP;
00104 
00105   return fTotalXsc;
00106 }
00107 
00109 
00110 G4double G4ComponentGGHadronNucleusXsc::GetTotalElementCrossSection(const G4ParticleDefinition* aParticle,
00111                                        G4double kinEnergy, 
00112                                        G4int Z, G4double A)
00113 {
00114   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00115                                                 kinEnergy);
00116   fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
00117   delete aDP;
00118 
00119   return fTotalXsc;
00120 }
00121 
00123 
00124 G4double G4ComponentGGHadronNucleusXsc::GetInelasticIsotopeCrossSection(const G4ParticleDefinition* aParticle,
00125                                            G4double kinEnergy, 
00126                                            G4int Z, G4int A)
00127 {
00128   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00129                                                 kinEnergy);
00130   fTotalXsc = GetIsoCrossSection(aDP, Z, A);
00131   delete aDP;
00132 
00133   return fInelasticXsc;
00134 }
00135 
00137 
00138 G4double G4ComponentGGHadronNucleusXsc::GetInelasticElementCrossSection(const G4ParticleDefinition* aParticle,
00139                                            G4double kinEnergy, 
00140                                            G4int Z, G4double A)
00141 {
00142   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00143                                                 kinEnergy);
00144   fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
00145   delete aDP;
00146 
00147   return fInelasticXsc;
00148 }
00149 
00151 
00152 G4double G4ComponentGGHadronNucleusXsc::GetElasticElementCrossSection(const G4ParticleDefinition* aParticle,
00153                                          G4double kinEnergy, 
00154                                          G4int Z, G4double A)
00155 {
00156   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00157                                                 kinEnergy);
00158   fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
00159   delete aDP;
00160 
00161   return fElasticXsc;
00162 }
00163 
00165 
00166 G4double G4ComponentGGHadronNucleusXsc::GetElasticIsotopeCrossSection(const G4ParticleDefinition* aParticle,
00167                                          G4double kinEnergy, 
00168                                          G4int Z, G4int A)
00169 {
00170   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00171                                                 kinEnergy);
00172   fTotalXsc = GetIsoCrossSection(aDP, Z, A);
00173   delete aDP;
00174 
00175   return fElasticXsc;
00176 }
00177 
00179  
00180 G4double G4ComponentGGHadronNucleusXsc::ComputeQuasiElasticRatio(const G4ParticleDefinition* aParticle,
00181                                          G4double kinEnergy, 
00182                                          G4int Z, G4int A)
00183 {
00184   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00185                                                 kinEnergy);
00186   fTotalXsc = GetIsoCrossSection(aDP, Z, A);
00187   delete aDP;
00188   G4double ratio = 0.;
00189 
00190   if(fInelasticXsc > 0.)
00191   {
00192     ratio = (fInelasticXsc - fProductionXsc)/fInelasticXsc;
00193     if(ratio < 0.) ratio = 0.;
00194   }
00195   return ratio;
00196 }
00197  
00198 
00199 
00200 
00202 
00203 G4bool 
00204 G4ComponentGGHadronNucleusXsc::IsIsoApplicable(const G4DynamicParticle* aDP, 
00205                                              G4int Z, G4int /*A*/, 
00206                                              const G4Element*,
00207                                              const G4Material*)
00208 {
00209   G4bool applicable      = false;
00210   // G4int baryonNumber     = aDP->GetDefinition()->GetBaryonNumber();
00211   G4double kineticEnergy = aDP->GetKineticEnergy();
00212 
00213   const G4ParticleDefinition* theParticle = aDP->GetDefinition();
00214  
00215   if ( ( kineticEnergy  >= fLowerLimit &&
00216          Z > 1 &&      // >=  He
00217        ( theParticle == theAProton   ||
00218          theParticle == theGamma     ||
00219          theParticle == theKPlus     ||
00220          theParticle == theKMinus    || 
00221          theParticle == theK0L     ||
00222          theParticle == theK0S    || 
00223          theParticle == theSMinus    ||  
00224          theParticle == theProton    ||
00225          theParticle == theNeutron   ||   
00226          theParticle == thePiPlus    ||
00227          theParticle == thePiMinus       ) )    ) applicable = true;
00228 
00229   return applicable;
00230 }
00231 
00233 //
00234 // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to
00235 // Glauber model with Gribov correction calculated in the dipole approximation on
00236 // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model.
00237 // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above
00238 
00239 G4double 
00240 G4ComponentGGHadronNucleusXsc::GetIsoCrossSection(const G4DynamicParticle* aParticle, 
00241                                                 G4int Z, G4int A,  
00242                                                 const G4Isotope*,
00243                                                 const G4Element*,
00244                                                 const G4Material*)
00245 {
00246   G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
00247   G4double hpInXsc(0.), hnInXsc(0.);
00248   G4double R             = GetNucleusRadius(A); 
00249 
00250   G4int N = A - Z;              // number of neutrons
00251   if (N < 0) N = 0;
00252 
00253   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00254 
00255   if( theParticle == theProton  || 
00256       theParticle == theNeutron ||
00257       theParticle == thePiPlus  || 
00258       theParticle == thePiMinus      )
00259   {
00260     // sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00261 
00262     sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton);
00263 
00264     hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
00265 
00266     sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron);
00267 
00268     hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
00269 
00270     cofInelastic = 2.4;
00271     cofTotal     = 2.0;
00272   }
00273   else if( theParticle == theKPlus   || 
00274            theParticle == theKMinus  || 
00275            theParticle == theK0S     || 
00276            theParticle == theK0L        ) 
00277   {
00278     sigma        = GetKaonNucleonXscVector(aParticle, A, Z);
00279     cofInelastic = 2.2;
00280     cofTotal     = 2.0;
00281     R = 1.3*fermi;
00282     R *= std::pow(G4double(A), 0.3333);
00283   }
00284   else
00285   {
00286     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00287     cofInelastic = 2.2;
00288     cofTotal     = 2.0;
00289   }
00290   // cofInelastic = 2.0;
00291 
00292   if( A > 1 )
00293   { 
00294     nucleusSquare = cofTotal*pi*R*R;   // basically 2piRR
00295     ratio = sigma/nucleusSquare;
00296 
00297     xsection =  nucleusSquare*std::log( 1. + ratio );
00298 
00299     xsection *= GetParticleBarCorTot(theParticle, Z);
00300 
00301     fTotalXsc = xsection;
00302 
00303   
00304 
00305     fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00306 
00307     fInelasticXsc *= GetParticleBarCorIn(theParticle, Z);
00308 
00309     fElasticXsc   = fTotalXsc - fInelasticXsc;
00310 
00311     if(fElasticXsc < 0.) fElasticXsc = 0.;
00312     
00313     G4double difratio = ratio/(1.+ratio);
00314 
00315     fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
00316 
00317 
00318     // sigma = GetHNinelasticXsc(aParticle, A, Z);
00319 
00320     sigma = Z*hpInXsc + N*hnInXsc;
00321 
00322     ratio = sigma/nucleusSquare;
00323 
00324     fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00325 
00326     if (fElasticXsc < 0.) fElasticXsc = 0.;
00327   }
00328   else // H
00329   {
00330     fTotalXsc = sigma;
00331     xsection  = sigma;
00332     
00333     if ( theParticle != theAProton ) 
00334     {
00335       sigma         = GetHNinelasticXsc(aParticle, A, Z);
00336       fInelasticXsc = sigma;
00337       fElasticXsc   = fTotalXsc - fInelasticXsc;      
00338     }
00339     else
00340     {
00341       fElasticXsc   = fTotalXsc - fInelasticXsc;
00342     }
00343     if (fElasticXsc < 0.) fElasticXsc = 0.;
00344       
00345   }
00346   return xsection; 
00347 }
00348 
00350 //
00351 // Return single-diffraction/inelastic cross-section ratio
00352 
00353 G4double G4ComponentGGHadronNucleusXsc::
00354 GetRatioSD(const G4DynamicParticle* aParticle, G4int A, G4int Z)
00355 {
00356   G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
00357   G4double R             = GetNucleusRadius(A); 
00358 
00359   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00360 
00361   if( theParticle == theProton  || 
00362       theParticle == theNeutron ||
00363       theParticle == thePiPlus  || 
00364       theParticle == thePiMinus      )
00365   {
00366     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00367     cofInelastic = 2.4;
00368     cofTotal     = 2.0;
00369   }
00370   else
00371   {
00372     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00373     cofInelastic = 2.2;
00374     cofTotal     = 2.0;
00375   }
00376   nucleusSquare = cofTotal*pi*R*R;   // basically 2piRR
00377   ratio = sigma/nucleusSquare;
00378 
00379   fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00380    
00381   G4double difratio = ratio/(1.+ratio);
00382 
00383   fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
00384 
00385   if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
00386   else                    ratio = 0.;
00387 
00388   return ratio; 
00389 }
00390 
00392 //
00393 // Return suasi-elastic/inelastic cross-section ratio
00394 
00395 G4double G4ComponentGGHadronNucleusXsc::
00396 GetRatioQE(const G4DynamicParticle* aParticle, G4int A, G4int Z)
00397 {
00398   G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
00399   G4double R             = GetNucleusRadius(A); 
00400 
00401   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00402 
00403   if( theParticle == theProton  || 
00404       theParticle == theNeutron ||
00405       theParticle == thePiPlus  || 
00406       theParticle == thePiMinus      )
00407   {
00408     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00409     cofInelastic = 2.4;
00410     cofTotal     = 2.0;
00411   }
00412   else
00413   {
00414     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00415     cofInelastic = 2.2;
00416     cofTotal     = 2.0;
00417   }
00418   nucleusSquare = cofTotal*pi*R*R;   // basically 2piRR
00419   ratio = sigma/nucleusSquare;
00420 
00421   fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00422 
00423   sigma = GetHNinelasticXsc(aParticle, A, Z);
00424   ratio = sigma/nucleusSquare;
00425 
00426   fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00427 
00428   if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc;
00429   else                                ratio = 0.;
00430   if ( ratio < 0. )                   ratio = 0.;
00431 
00432   return ratio; 
00433 }
00434 
00436 //
00437 // Returns hadron-nucleon Xsc according to differnt parametrisations:
00438 // [2] E. Levin, hep-ph/9710546
00439 // [3] U. Dersch, et al, hep-ex/9910052
00440 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 
00441 
00442 G4double 
00443 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, 
00444                                                  const G4Element* anElement)
00445 {
00446   G4int At = G4lrint(anElement->GetN());  // number of nucleons 
00447   G4int Zt = G4lrint(anElement->GetZ());  // number of protons
00448 
00449   return GetHadronNucleonXsc(aParticle, At, Zt);
00450 }
00451 
00453 //
00454 // Returns hadron-nucleon Xsc according to differnt parametrisations:
00455 // [2] E. Levin, hep-ph/9710546
00456 // [3] U. Dersch, et al, hep-ex/9910052
00457 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 
00458 
00459 G4double 
00460 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, 
00461                                                  G4int At, G4int /*Zt*/)
00462 {
00463   G4double xsection;
00464 
00465   //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt);
00466 
00467   G4double targ_mass = 0.939*GeV;  // ~mean neutron and proton ???
00468 
00469   G4double proj_mass     = aParticle->GetMass();
00470   G4double proj_momentum = aParticle->GetMomentum().mag();
00471   G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
00472 
00473   sMand /= GeV*GeV;  // in GeV for parametrisation
00474   proj_momentum /= GeV;
00475 
00476   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00477   
00478   G4double aa = At;
00479 
00480   if(theParticle == theGamma) 
00481   {
00482     xsection = aa*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525));
00483   } 
00484   else if(theParticle == theNeutron) // as proton ??? 
00485   {
00486     xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
00487   } 
00488   else if(theParticle == theProton) 
00489   {
00490     xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
00491     // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) );
00492     // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) );
00493   } 
00494   else if(theParticle == theAProton) 
00495   {
00496     xsection = aa*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525));
00497   } 
00498   else if(theParticle == thePiPlus) 
00499   {
00500     xsection = aa*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525));
00501   } 
00502   else if(theParticle == thePiMinus) 
00503   {
00504     // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) );
00505     xsection = aa*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525));
00506   } 
00507   else if(theParticle == theKPlus) 
00508   {
00509     xsection = aa*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525));
00510   } 
00511   else if(theParticle == theKMinus) 
00512   {
00513     xsection = aa*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525));
00514   }
00515   else  // as proton ??? 
00516   {
00517     xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
00518   } 
00519   xsection *= millibarn;
00520   return xsection;
00521 }
00522 
00523 
00525 //
00526 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
00527 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
00528 
00529 G4double 
00530 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, 
00531                                                     const G4Element* anElement)
00532 {
00533   G4int At = G4lrint(anElement->GetN());  // number of nucleons 
00534   G4int Zt = G4lrint(anElement->GetZ());  // number of protons
00535 
00536   return GetHadronNucleonXscPDG(aParticle, At, Zt);
00537 }
00538 
00539 
00540 
00541 
00543 //
00544 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
00545 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
00546 //  At = number of nucleons,  Zt = number of protons 
00547 
00548 G4double 
00549 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, 
00550                                                     G4int At, G4int Zt)
00551 {
00552   G4double xsection;
00553 
00554   G4int Nt = At-Zt;              // number of neutrons
00555   if (Nt < 0) Nt = 0;
00556   
00557   G4double zz = Zt;
00558   G4double aa = At;
00559   G4double nn = Nt;
00560 
00561   G4double targ_mass = G4ParticleTable::GetParticleTable()->
00562     GetIonTable()->GetIonMass(Zt, At);
00563 
00564   targ_mass = 0.939*GeV;  // ~mean neutron and proton ???
00565 
00566   G4double proj_mass     = aParticle->GetMass(); 
00567   G4double proj_momentum = aParticle->GetMomentum().mag();
00568 
00569   G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
00570 
00571   sMand         /= GeV*GeV;  // in GeV for parametrisation
00572 
00573   // General PDG fit constants
00574 
00575   G4double s0   = 5.38*5.38; // in Gev^2
00576   G4double eta1 = 0.458;
00577   G4double eta2 = 0.458;
00578   G4double B    = 0.308;
00579 
00580 
00581   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00582   
00583 
00584   if(theParticle == theNeutron) // proton-neutron fit 
00585   {
00586     xsection = zz*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00587                           + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
00588     xsection  += nn*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00589                       + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn
00590   } 
00591   else if(theParticle == theProton) 
00592   {
00593       
00594       xsection  = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00595                           + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
00596 
00597       xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00598                           + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
00599   } 
00600   else if(theParticle == theAProton) 
00601   {
00602     xsection  = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00603                           + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
00604 
00605     xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00606                           + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
00607   } 
00608   else if(theParticle == thePiPlus) 
00609   {
00610     xsection  = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.) 
00611                           + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2));
00612   } 
00613   else if(theParticle == thePiMinus) 
00614   {
00615     xsection  = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.) 
00616                           + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2));
00617   } 
00618   else if(theParticle == theKPlus || theParticle == theK0L ) 
00619   {
00620     xsection  = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) 
00621                           + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
00622 
00623     xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) 
00624                           + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
00625   } 
00626   else if(theParticle == theKMinus || theParticle == theK0S ) 
00627   {
00628     xsection  = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) 
00629                           + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
00630 
00631     xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) 
00632                           + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
00633   }
00634   else if(theParticle == theSMinus) 
00635   {
00636     xsection  = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.) 
00637                           - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
00638   } 
00639   else if(theParticle == theGamma) // modify later on
00640   {
00641     xsection  = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.) 
00642                           + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
00643    
00644   } 
00645   else  // as proton ??? 
00646   {
00647     xsection  = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00648                           + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
00649 
00650     xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00651                           + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
00652   } 
00653   xsection *= millibarn; // parametrised in mb
00654   return xsection;
00655 }
00656 
00657 
00659 //
00660 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
00661 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
00662 
00663 G4double 
00664 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, 
00665                                                    const G4Element* anElement)
00666 {
00667   G4int At = G4lrint(anElement->GetN());  // number of nucleons 
00668   G4int Zt = G4lrint(anElement->GetZ());  // number of protons
00669 
00670   return GetHadronNucleonXscNS(aParticle, At, Zt);
00671 }
00672 
00673 
00674 
00675 
00677 //
00678 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
00679 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
00680 
00681 G4double 
00682 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, 
00683                                                    G4int At, G4int Zt)
00684 {
00685   G4double xsection(0);
00686   // G4double Delta;   DHW 19 May 2011: variable set but not used
00687   G4double A0, B0;
00688   G4double hpXscv(0);
00689   G4double hnXscv(0);
00690 
00691   G4int Nt = At-Zt;              // number of neutrons
00692   if (Nt < 0) Nt = 0;  
00693 
00694   G4double aa = At;
00695   G4double zz = Zt;
00696   G4double nn = Nt;
00697 
00698   G4double targ_mass = G4ParticleTable::GetParticleTable()->
00699   GetIonTable()->GetIonMass(Zt, At);
00700 
00701   targ_mass = 0.939*GeV;  // ~mean neutron and proton ???
00702 
00703   G4double proj_mass     = aParticle->GetMass();
00704   G4double proj_energy   = aParticle->GetTotalEnergy(); 
00705   G4double proj_momentum = aParticle->GetMomentum().mag();
00706 
00707   G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
00708 
00709   sMand         /= GeV*GeV;  // in GeV for parametrisation
00710   proj_momentum /= GeV;
00711   proj_energy   /= GeV;
00712   proj_mass     /= GeV;
00713 
00714   // General PDG fit constants
00715 
00716   G4double s0   = 5.38*5.38; // in Gev^2
00717   G4double eta1 = 0.458;
00718   G4double eta2 = 0.458;
00719   G4double B    = 0.308;
00720 
00721 
00722   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00723   
00724 
00725   if(theParticle == theNeutron) 
00726   {
00727     if( proj_momentum >= 373.)
00728     {
00729       return GetHadronNucleonXscPDG(aParticle,At,Zt);
00730     }
00731     else if( proj_momentum >= 10.)
00732     // if( proj_momentum >= 2.)
00733     {
00734       //  Delta = 1.;  // DHW 19 May 2011: variable set but not used
00735       // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
00736 
00737       if(proj_momentum >= 10.)
00738       {
00739         B0 = 7.5;
00740         A0 = 100. - B0*std::log(3.0e7);
00741 
00742         xsection = A0 + B0*std::log(proj_energy) - 11
00743                   + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
00744                      0.93827*0.93827,-0.165);        //  mb
00745       }
00746       xsection *= zz + nn;
00747     }
00748     else
00749     {
00750       // nn to be pp
00751 
00752       if( proj_momentum < 0.73 )
00753       {
00754         hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
00755       }
00756       else if( proj_momentum < 1.05  )
00757       {
00758        hnXscv = 23 + 40*(std::log(proj_momentum/0.73))*
00759                          (std::log(proj_momentum/0.73));
00760       }
00761       else  // if( proj_momentum < 10.  )
00762       {
00763          hnXscv = 39.0+
00764               75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
00765       }
00766       // pn to be np
00767 
00768       if( proj_momentum < 0.8 )
00769       {
00770         hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
00771       }      
00772       else if( proj_momentum < 1.4 )
00773       {
00774         hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
00775       }
00776       else    // if( proj_momentum < 10.  )
00777       {
00778         hpXscv = 33.3+
00779               20.8*(std::pow(proj_momentum,2.0)-1.35)/
00780                  (std::pow(proj_momentum,2.50)+0.95);
00781       }
00782       xsection = hpXscv*zz + hnXscv*nn;
00783     }
00784   } 
00785   else if(theParticle == theProton) 
00786   {
00787     if( proj_momentum >= 373.)
00788     {
00789       return GetHadronNucleonXscPDG(aParticle,At,Zt);
00790     }
00791     else if( proj_momentum >= 10.)
00792     // if( proj_momentum >= 2.)
00793     {
00794       // Delta = 1.;  DHW 19 May 2011: variable set but not used
00795       // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
00796 
00797       if(proj_momentum >= 10.)
00798       {
00799         B0 = 7.5;
00800         A0 = 100. - B0*std::log(3.0e7);
00801 
00802         xsection = A0 + B0*std::log(proj_energy) - 11
00803                   + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
00804                      0.93827*0.93827,-0.165);        //  mb
00805       }
00806       xsection *= zz + nn;
00807     }
00808     else
00809     {
00810       // pp
00811 
00812       if( proj_momentum < 0.73 )
00813       {
00814         hpXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
00815       }
00816       else if( proj_momentum < 1.05  )
00817       {
00818        hpXscv = 23 + 40*(std::log(proj_momentum/0.73))*
00819                          (std::log(proj_momentum/0.73));
00820       }
00821       else    // if( proj_momentum < 10.  )
00822       {
00823          hpXscv = 39.0+
00824               75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
00825       }
00826       // pn to be np
00827 
00828       if( proj_momentum < 0.8 )
00829       {
00830         hnXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
00831       }      
00832       else if( proj_momentum < 1.4 )
00833       {
00834         hnXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
00835       }
00836       else   // if( proj_momentum < 10.  )
00837       {
00838         hnXscv = 33.3+
00839               20.8*(std::pow(proj_momentum,2.0)-1.35)/
00840                  (std::pow(proj_momentum,2.50)+0.95);
00841       }
00842       xsection = hpXscv*zz + hnXscv*nn;
00843       // xsection = hpXscv*(Zt + Nt);
00844       // xsection = hnXscv*(Zt + Nt);
00845     }    
00846     // xsection *= 0.95;
00847   } 
00848   else if( theParticle == theAProton ) 
00849   {
00850     // xsection  = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00851     //                       + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
00852 
00853     // xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00854     //                    + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
00855 
00856     G4double logP = std::log(proj_momentum);
00857 
00858     if( proj_momentum <= 1.0 )
00859     {
00860       xsection  = zz*(65.55 + 53.84/(proj_momentum+1.e-6)  );
00861     }
00862     else
00863     {
00864       xsection  = zz*( 41.1 + 77.2*std::pow( proj_momentum, -0.68) 
00865                        + 0.293*logP*logP - 1.82*logP );
00866     }
00867     if ( nn > 0.)  
00868     {
00869       xsection += nn*( 41.9 + 96.2*std::pow( proj_momentum, -0.99) - 0.154*logP);
00870     }
00871     else // H
00872     {
00873       fInelasticXsc =   38.0 + 38.0*std::pow( proj_momentum, -0.96) 
00874                         - 0.169*logP*logP;
00875       fInelasticXsc *=  millibarn;
00876     }    
00877   } 
00878   else if( theParticle == thePiPlus ) 
00879   {
00880     if(proj_momentum < 0.4)
00881     {
00882       G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
00883       hpXscv      = Ex3+20.0;
00884     }
00885     else if( proj_momentum < 1.15 )
00886     {
00887       G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
00888       hpXscv = Ex4+14.0;
00889     }
00890     else if(proj_momentum < 3.5)
00891     {
00892       G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
00893       G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
00894       hpXscv = Ex1+Ex2+27.5;
00895     }
00896     else //  if(proj_momentum > 3.5) // mb
00897     {
00898       hpXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
00899     }
00900     // pi+n = pi-p??
00901 
00902     if(proj_momentum < 0.37)
00903     {
00904       hnXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
00905     }
00906     else if(proj_momentum<0.65)
00907     {
00908        hnXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
00909     }
00910     else if(proj_momentum<1.3)
00911     {
00912       hnXscv = 36.1+
00913                 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
00914                 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
00915     }
00916     else if(proj_momentum<3.0)
00917     {
00918       hnXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
00919                 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
00920                 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
00921     }
00922     else   // mb
00923     {
00924       hnXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); 
00925     }
00926     xsection = hpXscv*zz + hnXscv*nn;
00927   } 
00928   else if(theParticle == thePiMinus) 
00929   {
00930     // pi-n = pi+p??
00931 
00932     if(proj_momentum < 0.4)
00933     {
00934       G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
00935       hnXscv      = Ex3+20.0;
00936     }
00937     else if(proj_momentum < 1.15)
00938     {
00939       G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
00940       hnXscv = Ex4+14.0;
00941     }
00942     else if(proj_momentum < 3.5)
00943     {
00944       G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
00945       G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
00946       hnXscv = Ex1+Ex2+27.5;
00947     }
00948     else //  if(proj_momentum > 3.5) // mb
00949     {
00950       hnXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
00951     }
00952     // pi-p
00953 
00954     if(proj_momentum < 0.37)
00955     {
00956       hpXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
00957     }
00958     else if(proj_momentum<0.65)
00959     {
00960        hpXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
00961     }
00962     else if(proj_momentum<1.3)
00963     {
00964       hpXscv = 36.1+
00965                 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
00966                 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
00967     }
00968     else if(proj_momentum<3.0)
00969     {
00970       hpXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
00971                 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
00972                 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
00973     }
00974     else   // mb
00975     {
00976       hpXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); 
00977     }
00978     xsection = hpXscv*zz + hnXscv*nn;
00979   } 
00980   else if(theParticle == theKPlus) 
00981   {
00982     xsection  = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) 
00983                           + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
00984 
00985     xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) 
00986                           + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
00987   } 
00988   else if(theParticle == theKMinus) 
00989   {
00990     xsection  = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) 
00991                           + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
00992 
00993     xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) 
00994                           + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
00995   }
00996   else if(theParticle == theSMinus) 
00997   {
00998     xsection  = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.) 
00999                           - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
01000   } 
01001   else if(theParticle == theGamma) // modify later on
01002   {
01003     xsection  = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.) 
01004                           + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
01005    
01006   } 
01007   else  // as proton ??? 
01008   {
01009     xsection  = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
01010                           + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
01011 
01012     xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
01013                           + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
01014   } 
01015   xsection *= millibarn; // parametrised in mb
01016   return xsection;
01017 }
01018 
01019 G4double 
01020 G4ComponentGGHadronNucleusXsc::GetKaonNucleonXscVector(const G4DynamicParticle* aParticle, 
01021                                                    G4int At, G4int Zt)
01022 {
01023   G4double Tkin, logTkin, xsc, xscP, xscN;
01024   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
01025 
01026   G4int Nt = At-Zt;              // number of neutrons
01027   if (Nt < 0) Nt = 0;  
01028 
01029   Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV
01030 
01031   if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt);
01032 
01033   logTkin = std::log(Tkin); // Tkin in MeV!!!
01034 
01035  if( theParticle == theKPlus )
01036  {
01037    xscP = hnXsc->GetKpProtonTotXscVector(logTkin);
01038    xscN = hnXsc->GetKpNeutronTotXscVector(logTkin);
01039  }
01040  else if( theParticle == theKMinus )
01041  {
01042    xscP = hnXsc->GetKmProtonTotXscVector(logTkin);
01043    xscN = hnXsc->GetKmNeutronTotXscVector(logTkin);
01044  }
01045  else // K-zero as half of K+ and K-
01046  {
01047    xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5;
01048    xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5;
01049  }
01050  xsc = xscP*Zt + xscN*Nt;
01051   return xsc;
01052 }
01054 //
01055 // Returns hadron-nucleon inelastic cross-section based on proper parametrisation 
01056 
01057 G4double 
01058 G4ComponentGGHadronNucleusXsc::GetHNinelasticXsc(const G4DynamicParticle* aParticle, 
01059                                                const G4Element* anElement)
01060 {
01061   G4int At = G4lrint(anElement->GetN());  // number of nucleons 
01062   G4int Zt = G4lrint(anElement->GetZ());  // number of protons
01063 
01064   return GetHNinelasticXsc(aParticle, At, Zt);
01065 }
01066 
01068 //
01069 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation 
01070 
01071 G4double 
01072 G4ComponentGGHadronNucleusXsc::GetHNinelasticXsc(const G4DynamicParticle* aParticle, 
01073                                                      G4int At,  G4int Zt)
01074 {
01075   G4ParticleDefinition* hadron = aParticle->GetDefinition();
01076   G4double sumInelastic;
01077   G4int Nt = At - Zt;
01078   if(Nt < 0) Nt = 0;
01079   
01080   if( hadron == theKPlus )
01081   {
01082     sumInelastic =  GetHNinelasticXscVU(aParticle, At, Zt);
01083   }
01084   else
01085   {
01086     //sumInelastic  = Zt*GetHadronNucleonXscMK(aParticle, theProton);
01087     // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron);    
01088     sumInelastic  = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1);
01089     sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0);    
01090   } 
01091   return sumInelastic;
01092 }
01093 
01094 
01096 //
01097 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation 
01098 
01099 G4double 
01100 G4ComponentGGHadronNucleusXsc::GetHNinelasticXscVU(const G4DynamicParticle* aParticle, 
01101                                                  G4int At, G4int Zt)
01102 {
01103   G4int PDGcode    = aParticle->GetDefinition()->GetPDGEncoding();
01104   G4int absPDGcode = std::abs(PDGcode);
01105 
01106   G4double Elab = aParticle->GetTotalEnergy();              
01107                           // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
01108   G4double Plab = aParticle->GetMomentum().mag();            
01109                           // std::sqrt(Elab * Elab - 0.88);
01110 
01111   Elab /= GeV;
01112   Plab /= GeV;
01113 
01114   G4double LogPlab    = std::log( Plab );
01115   G4double sqrLogPlab = LogPlab * LogPlab;
01116 
01117   //G4cout<<"Plab = "<<Plab<<G4endl;
01118 
01119   G4double NumberOfTargetProtons = G4double(Zt); 
01120   G4double NumberOfTargetNucleons = G4double(At);
01121   G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
01122 
01123   if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0;
01124 
01125   G4double Xtotal, Xelastic, Xinelastic;
01126 
01127   if( absPDGcode > 1000 )  //------Projectile is baryon --------
01128   {
01129        G4double XtotPP = 48.0 +  0. *std::pow(Plab, 0.  ) +
01130                          0.522*sqrLogPlab - 4.51*LogPlab;
01131 
01132        G4double XtotPN = 47.3 +  0. *std::pow(Plab, 0.  ) +
01133                          0.513*sqrLogPlab - 4.27*LogPlab;
01134 
01135        G4double XelPP  = 11.9 + 26.9*std::pow(Plab,-1.21) +
01136                          0.169*sqrLogPlab - 1.85*LogPlab;
01137 
01138        G4double XelPN  = 11.9 + 26.9*std::pow(Plab,-1.21) +
01139                          0.169*sqrLogPlab - 1.85*LogPlab;
01140 
01141        Xtotal          = (NumberOfTargetProtons * XtotPP +
01142                           NumberOfTargetNeutrons * XtotPN);
01143 
01144        Xelastic        = (NumberOfTargetProtons * XelPP +
01145                           NumberOfTargetNeutrons * XelPN);
01146   }
01147   else if( PDGcode ==  211 ) //------Projectile is PionPlus -------
01148   {
01149        G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) +
01150                           0.19 *sqrLogPlab - 0.0 *LogPlab;
01151 
01152        G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) +
01153                           0.456*sqrLogPlab - 4.03*LogPlab;
01154 
01155        G4double XelPiP  =  0.0 + 11.4*std::pow(Plab,-0.40) +
01156                            0.079*sqrLogPlab - 0.0 *LogPlab;
01157 
01158        G4double XelPiN  = 1.76 + 11.2*std::pow(Plab,-0.64) +
01159                           0.043*sqrLogPlab - 0.0 *LogPlab;
01160 
01161        Xtotal           = ( NumberOfTargetProtons  * XtotPiP +
01162                             NumberOfTargetNeutrons * XtotPiN  );
01163 
01164        Xelastic         = ( NumberOfTargetProtons  * XelPiP  +
01165                             NumberOfTargetNeutrons * XelPiN   );
01166   }
01167   else if( PDGcode == -211 ) //------Projectile is PionMinus -------
01168   {
01169        G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) +
01170                           0.456*sqrLogPlab - 4.03*LogPlab;
01171 
01172        G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) +
01173                           0.19 *sqrLogPlab - 0.0 *LogPlab;
01174 
01175        G4double XelPiP  = 1.76 + 11.2*std::pow(Plab,-0.64) +
01176                           0.043*sqrLogPlab - 0.0 *LogPlab;
01177 
01178        G4double XelPiN  =  0.0 + 11.4*std::pow(Plab,-0.40) +
01179                            0.079*sqrLogPlab - 0.0 *LogPlab;
01180 
01181        Xtotal           = ( NumberOfTargetProtons  * XtotPiP +
01182                             NumberOfTargetNeutrons * XtotPiN  );
01183 
01184        Xelastic         = ( NumberOfTargetProtons  * XelPiP  +
01185                             NumberOfTargetNeutrons * XelPiN   );
01186   }
01187   else if( PDGcode ==  111 )  //------Projectile is PionZero  -------
01188   {
01189        G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) +
01190                           0.19 *sqrLogPlab - 0.0 *LogPlab +   //Pi+
01191                           33.0 + 14.0 *std::pow(Plab,-1.36) +
01192                           0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
01193 
01194        G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) +
01195                           0.456*sqrLogPlab - 4.03*LogPlab +   //Pi+
01196                           16.4 + 19.3 *std::pow(Plab,-0.42) +
01197                           0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
01198 
01199        G4double XelPiP  =( 0.0 + 11.4*std::pow(Plab,-0.40) +
01200                            0.079*sqrLogPlab - 0.0 *LogPlab +    //Pi+
01201                            1.76 + 11.2*std::pow(Plab,-0.64) +
01202                            0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
01203 
01204        G4double XelPiN  =( 1.76 + 11.2*std::pow(Plab,-0.64) +
01205                            0.043*sqrLogPlab - 0.0 *LogPlab +   //Pi+
01206                            0.0  + 11.4*std::pow(Plab,-0.40) +
01207                            0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
01208 
01209        Xtotal           = ( NumberOfTargetProtons  * XtotPiP +
01210                             NumberOfTargetNeutrons * XtotPiN  );
01211 
01212        Xelastic         = ( NumberOfTargetProtons  * XelPiP  +
01213                             NumberOfTargetNeutrons * XelPiN   );
01214   }
01215   else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
01216   {
01217        G4double XtotKP = 18.1 +  0. *std::pow(Plab, 0.  ) +
01218                          0.26 *sqrLogPlab - 1.0 *LogPlab;
01219        G4double XtotKN = 18.7 +  0. *std::pow(Plab, 0.  ) +
01220                          0.21 *sqrLogPlab - 0.89*LogPlab;
01221 
01222        G4double XelKP  =  5.0 +  8.1*std::pow(Plab,-1.8 ) +
01223                           0.16 *sqrLogPlab - 1.3 *LogPlab;
01224 
01225        G4double XelKN  =  7.3 +  0. *std::pow(Plab,-0.  ) +
01226                           0.29 *sqrLogPlab - 2.4 *LogPlab;
01227 
01228        Xtotal          = ( NumberOfTargetProtons  * XtotKP +
01229                            NumberOfTargetNeutrons * XtotKN  );
01230 
01231        Xelastic        = ( NumberOfTargetProtons  * XelKP  +
01232                            NumberOfTargetNeutrons * XelKN   );
01233   }
01234   else if( PDGcode ==-321 )  //------Projectile is KaonMinus ------
01235   {
01236        G4double XtotKP = 32.1 +  0. *std::pow(Plab, 0.  ) +
01237                          0.66 *sqrLogPlab - 5.6 *LogPlab;
01238        G4double XtotKN = 25.2 +  0. *std::pow(Plab, 0.  ) +
01239                          0.38 *sqrLogPlab - 2.9 *LogPlab;
01240 
01241        G4double XelKP  =  7.3 +  0. *std::pow(Plab,-0.  ) +
01242                           0.29 *sqrLogPlab - 2.4 *LogPlab;
01243 
01244        G4double XelKN  =  5.0 +  8.1*std::pow(Plab,-1.8 ) +
01245                           0.16 *sqrLogPlab - 1.3 *LogPlab;
01246 
01247        Xtotal          = ( NumberOfTargetProtons  * XtotKP +
01248                            NumberOfTargetNeutrons * XtotKN  );
01249 
01250        Xelastic        = ( NumberOfTargetProtons  * XelKP  +
01251                            NumberOfTargetNeutrons * XelKN   );
01252   }
01253   else if( PDGcode == 311 ) //------Projectile is KaonZero ------
01254   {
01255        G4double XtotKP = ( 18.1 +  0. *std::pow(Plab, 0.  ) +
01256                           0.26 *sqrLogPlab - 1.0 *LogPlab +   //K+
01257                           32.1 +  0. *std::pow(Plab, 0.  ) +
01258                           0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
01259 
01260        G4double XtotKN = ( 18.7 +  0. *std::pow(Plab, 0.  ) +
01261                           0.21 *sqrLogPlab - 0.89*LogPlab +   //K+
01262                           25.2 +  0. *std::pow(Plab, 0.  ) +
01263                           0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
01264 
01265        G4double XelKP  = (  5.0 +  8.1*std::pow(Plab,-1.8 )
01266                            + 0.16 *sqrLogPlab - 1.3 *LogPlab +   //K+
01267                            7.3 +  0. *std::pow(Plab,-0.  ) +
01268                            0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
01269 
01270        G4double XelKN  = (  7.3 +  0. *std::pow(Plab,-0.  ) +
01271                            0.29 *sqrLogPlab - 2.4 *LogPlab +   //K+
01272                            5.0 +  8.1*std::pow(Plab,-1.8 ) +
01273                            0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
01274 
01275        Xtotal          = ( NumberOfTargetProtons  * XtotKP +
01276                            NumberOfTargetNeutrons * XtotKN  );
01277 
01278        Xelastic        = ( NumberOfTargetProtons  * XelKP  +
01279                            NumberOfTargetNeutrons * XelKN   );
01280   }
01281   else  //------Projectile is undefined, Nucleon assumed
01282   {
01283        G4double XtotPP = 48.0 +  0. *std::pow(Plab, 0.  ) +
01284                          0.522*sqrLogPlab - 4.51*LogPlab;
01285 
01286        G4double XtotPN = 47.3 +  0. *std::pow(Plab, 0.  ) +
01287                          0.513*sqrLogPlab - 4.27*LogPlab;
01288 
01289        G4double XelPP  = 11.9 + 26.9*std::pow(Plab,-1.21) +
01290                          0.169*sqrLogPlab - 1.85*LogPlab;
01291        G4double XelPN  = 11.9 + 26.9*std::pow(Plab,-1.21) +
01292                          0.169*sqrLogPlab - 1.85*LogPlab;
01293 
01294        Xtotal          = ( NumberOfTargetProtons  * XtotPP +
01295                            NumberOfTargetNeutrons * XtotPN  );
01296 
01297        Xelastic        = ( NumberOfTargetProtons  * XelPP  +
01298                            NumberOfTargetNeutrons * XelPN   );
01299   }
01300   Xinelastic = Xtotal - Xelastic;
01301 
01302   if( Xinelastic < 0.) Xinelastic = 0.;
01303 
01304   return Xinelastic*= millibarn;
01305 }
01306 
01308 //
01309 //
01310 
01311 G4double 
01312 G4ComponentGGHadronNucleusXsc::GetNucleusRadius(const G4DynamicParticle* , 
01313                                               const G4Element* anElement)
01314 {
01315   G4int At = G4lrint(anElement->GetN());
01316   G4double oneThird = 1.0/3.0;
01317   G4double cubicrAt = std::pow(G4double(At), oneThird); 
01318 
01319   G4double R;  // = fRadiusConst*cubicrAt;
01320   /*  
01321   G4double tmp = std::pow( cubicrAt-1., 3.);
01322   tmp         += At;
01323   tmp         *= 0.5;
01324 
01325   if (At > 20.)   // 20.
01326   {
01327     R = fRadiusConst*std::pow (tmp, oneThird); 
01328   }
01329   else
01330   {
01331     R = fRadiusConst*cubicrAt; 
01332   }
01333   */
01334   
01335   R = fRadiusConst*cubicrAt;
01336 
01337   G4double meanA  = 21.;
01338 
01339   G4double tauA1  = 40.; 
01340   G4double tauA2  = 10.; 
01341   G4double tauA3  = 5.; 
01342 
01343   G4double a1 = 0.85;
01344   G4double b1 = 1. - a1;
01345 
01346   G4double b2 = 0.3;
01347   G4double b3 = 4.;
01348 
01349   if (At > 20)   // 20.
01350   {
01351     R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) ); 
01352   }
01353   else if (At > 3)
01354   {
01355     R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) ); 
01356   }
01357   else 
01358   {
01359     R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) ); 
01360   }  
01361   return R;
01362  
01363 }
01365 //
01366 //
01367 
01368 G4double 
01369 G4ComponentGGHadronNucleusXsc::GetNucleusRadius(G4int At)
01370 {
01371   G4double oneThird = 1.0/3.0;
01372   G4double cubicrAt = std::pow(G4double(At), oneThird); 
01373 
01374   G4double R;  // = fRadiusConst*cubicrAt;
01375 
01376   /*
01377   G4double tmp = std::pow( cubicrAt-1., 3.);
01378   tmp         += At;
01379   tmp         *= 0.5;
01380 
01381   if (At > 20.)
01382   {
01383     R = fRadiusConst*std::pow (tmp, oneThird); 
01384   }
01385   else
01386   {
01387     R = fRadiusConst*cubicrAt; 
01388   }
01389   */
01390 
01391   R = fRadiusConst*cubicrAt;
01392 
01393   G4double meanA = 20.;
01394   G4double tauA  = 20.; 
01395 
01396   if (At > 20)   // 20.
01397   {
01398     R *= ( 0.8 + 0.2*std::exp( -(G4double(At) - meanA)/tauA) ); 
01399   }
01400   else
01401   {
01402     R *= ( 1.0 + 0.1*( 1. - std::exp( (G4double(At) - meanA)/tauA) ) ); 
01403   }
01404 
01405   return R;
01406 }
01407 
01409 //
01410 //
01411 
01412 G4double G4ComponentGGHadronNucleusXsc::CalculateEcmValue( const G4double mp , 
01413                                                          const G4double mt , 
01414                                                          const G4double Plab )
01415 {
01416   G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
01417   G4double Ecm  = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
01418   // G4double Pcm  = Plab * mt / Ecm;
01419   // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
01420 
01421   return Ecm ; // KEcm;
01422 }
01423 
01425 //
01426 //
01427 
01428 G4double G4ComponentGGHadronNucleusXsc::CalcMandelstamS( const G4double mp , 
01429                                                        const G4double mt , 
01430                                                        const G4double Plab )
01431 {
01432   G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
01433   G4double sMand  = mp*mp + mt*mt + 2*Elab*mt ;
01434 
01435   return sMand;
01436 }
01437 
01439 //
01440 //
01441 
01442 void G4ComponentGGHadronNucleusXsc::CrossSectionDescription(std::ostream& outFile) const
01443 {
01444   outFile << "G4ComponentGGHadronNucleusXsc calculates total, inelastic and\n"
01445           << "elastic cross sections for hadron-nucleus cross sections using\n"
01446           << "the Glauber model with Gribov corrections.  It is valid for all\n"
01447           << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n"
01448           << "pi+, pi-, K+, K- and gammas with energies above 3 GeV.  This is\n"
01449           << "a cross section component which is to be used to build a cross\n"
01450           << "data set.\n";
01451 }
01452 
01453 
01455 //
01456 // Correction arrays for GG <-> Bar changea at ~ 90 GeV
01457 
01458 const G4double G4ComponentGGHadronNucleusXsc::fNeutronBarCorrectionTot[93] = {
01459 
01460 1.0, 1.0,     1.118517e+00, 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00, 
01461 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00, 
01462 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00,
01463 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00, 
01464 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00, 
01465 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00, 
01466 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00, 
01467 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00, 
01468 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00, 
01469 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00, 
01470 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00, 
01471 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00, 
01472 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00, 
01473 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00, 
01474 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00, 
01475 1.037075e+00, 1.034721e+00
01476 
01477 };
01478 
01479 const G4double G4ComponentGGHadronNucleusXsc::fNeutronBarCorrectionIn[93] = {
01480 
01481 1.0, 1.0,     1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00, 
01482 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00, 
01483 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00,
01484 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00, 
01485 1.131515e+00, 1.130338e+00, 1.134171e+00, 1.139206e+00, 1.141474e+00, 1.142189e+00, 
01486 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00, 
01487 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00, 
01488 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00, 
01489 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00, 
01490 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00, 
01491 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00, 
01492 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00, 
01493 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00, 
01494 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00, 
01495 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00, 
01496 1.046435e+00, 1.042614e+00
01497 
01498 };
01499 
01500 const G4double G4ComponentGGHadronNucleusXsc::fProtonBarCorrectionTot[93] = {
01501 
01502 1.0, 1.0,     
01503 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00, 
01504 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00, 
01505 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00, 
01506 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00, 
01507 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00, 
01508 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00, 
01509 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00, 
01510 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00, 
01511 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00, 
01512 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00, 
01513 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00, 
01514 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00, 
01515 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00, 
01516 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00, 
01517 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00, 
01518 1.034720e+00 
01519 
01520 };
01521 
01522 const G4double G4ComponentGGHadronNucleusXsc::fProtonBarCorrectionIn[93] = {
01523 
01524 1.0, 1.0,     
01525 1.167419e+00, 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00, 
01526 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00, 
01527 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00, 
01528 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00, 
01529 1.130337e+00, 1.134170e+00, 1.139205e+00, 1.141472e+00, 1.142188e+00, 1.140724e+00, 
01530 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00, 
01531 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00, 
01532 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00, 
01533 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00, 
01534 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00, 
01535 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00, 
01536 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00, 
01537 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00, 
01538 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00, 
01539 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00, 
01540 1.042613e+00 
01541 
01542 };
01543 
01544 
01545 const G4double G4ComponentGGHadronNucleusXsc::fPionPlusBarCorrectionTot[93] = {
01546 
01547 1.0, 1.0,     
01548 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00, 
01549 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00, 
01550 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00, 
01551 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00, 
01552 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00, 
01553 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00, 
01554 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00, 
01555 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00, 
01556 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00, 
01557 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00, 
01558 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00, 
01559 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00, 
01560 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00, 
01561 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00, 
01562 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00, 
01563 1.152974e+00
01564  
01565 };
01566 
01567 const G4double G4ComponentGGHadronNucleusXsc::fPionPlusBarCorrectionIn[93] = {
01568 
01569 1.0, 1.0,    
01570 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.044495e+00, 1.062622e+00, 
01571 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.065100e+00, 
01572 1.070480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00, 
01573 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00, 
01574 1.137312e+00, 1.126263e+00, 1.126459e+00, 1.115191e+00, 1.116986e+00, 1.117184e+00, 
01575 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00, 
01576 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00, 
01577 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00, 
01578 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00, 
01579 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00, 
01580 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00, 
01581 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00, 
01582 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00, 
01583 1.071107e+00, 1.069955e+00, 1.064856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00, 
01584 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00, 
01585 1.059658e+00
01586  
01587 };
01588 
01589 
01590 const G4double G4ComponentGGHadronNucleusXsc::fPionMinusBarCorrectionTot[93] = {
01591 
01592 1.0, 1.0,     
01593 1.075927e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00, 
01594 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00, 
01595 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00, 
01596 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00, 
01597 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00, 
01598 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00, 
01599 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00, 
01600 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00, 
01601 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00, 
01602 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00, 
01603 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00, 
01604 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00, 
01605 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00, 
01606 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00, 
01607 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00, 
01608 1.157267e+00 
01609 };
01610 
01611 
01612 const G4double G4ComponentGGHadronNucleusXsc::fPionMinusBarCorrectionIn[93] = {
01613 
01614 1.0, 1.0,    
01615 1.140246e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.044514e+00, 1.062628e+00, 
01616 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00, 
01617 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00, 
01618 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00, 
01619 1.138502e+00, 1.127678e+00, 1.127244e+00, 1.116634e+00, 1.118347e+00, 1.118988e+00, 
01620 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00, 
01621 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00, 
01622 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00, 
01623 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00, 
01624 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00, 
01625 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00, 
01626 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00, 
01627 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00, 
01628 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00, 
01629 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00, 
01630 1.062699e+00 
01631 
01632 };
01633 
01634 
01635 //
01636 //

Generated on Mon May 27 17:47:56 2013 for Geant4 by  doxygen 1.4.7