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ABSTRACT

We apply a novel adaptive mesh refinement code, AMRVAC, toemigally investigate the
various evolutionary phases in the interaction of a reistiivshell with its surrounding cold
Interstellar Medium (ISM). We do this for both 1D isotropis well as full 2D jetlike fire-
ball models. This is relevant for Gamma Ray Bursts, and weathsitnate that, thanks to the
AMR strategy, we resolve the internal structure of the skedchell-ISM matter, which will
leave its imprint on the GRB afterglow. We determine the thxedion from an initial Lorentz
factory = 100 up to the almost Newtonign~ O(2) phase of the flow. We present axisym-
metric 2D shell evolutions, with the 2D extent charactedibg their initial opening angle. In
such jetlike GRB models, we discuss th&eiences with the 1D isotropic GRB equivalents.
These are mainly due to thermally induced sideways expassib both the shocked shell
and shocked ISM regions. We found that the propagating 2arelativistic shell does not
accrete all the surrounding medium located within its &itipening angle. Part of this ISM
matter gets pushed away laterally and forms a wide bow-shookiguration with swirling
flow patterns trailing the thin shell. The resulting shelteleration is quite dierent from
that found in isotropic GRB models. As long as the laterallshgansion is merely due to
ballistic spreading of the shell, isotropic and 2D modelzeagerfectly. As thermally induced
expansions eventually lead to significantly higher latepeds, the 2D shell interacts with
comparably more ISM matter and decelerates earlier thasoitpic counterpart.

Key words. Gamma Rays: Afterglow, Hydrodynamics, Theory — ISM: jetd antflows —
Galaxies: jets, ISM — methods: numerical, relativity, AMR

1 INTRODUCTION tivity (see Marti & Muller 2003). The enormous time and |¢émg
scale ranges associated with violent astrophysical phenann
relativistic hydrodynamics (RHD), make Adaptive Mesh Refin
ment (AMR) an important algorithmic ingredient for compiida-
ally affordable simulations. RHD numerical simulations, particu-
larly when combined with AMR capabilities, can investigatany
details of relativistic flow regimes relevant for astropilgs

Many high energy astrophysical phenomena involve rekttwi
flows and shocks. For example, relativistic flows are invoted
explain the observed properties of various compact asysipdl
objects (Arons 2004; Ferrari 1998; Corbel 2004). Astrojdals
relativistic flows can reach a Lorentz factor of210 in associ-
ation with jets from Seyfert and radio loud galaxies (Pineale
2003), or even go up to Lorentz factors?1010° for Gamma Ray
Burst (GRB) scenarios (Sari & Piran 1999; Soderberg & Ramire
Ruiz 2001; Mészaros 2006). In the last decade, continegdldp-
ment of numerical algorithms and the increase in compute/epo
have allowed to significantly progress in high-resolutibgdro-
dynamic numerical simulations in both special and genesia-r

In this paper, we concentrate on relativistic dynamics & th
fireball model for the afterglow phases of GRBs, in one and two
dimensional simulations. Since the follow-up detectionGiRBs
in X-ray (Costa et al. 1997) and their afterglows at longevava
lengths (Sahu et al. 1997; Van Paradijs et al. 1997; Galanaa et
1997; Frail et al. 1997; Piro et al. 1998), the cosmologiaadio
of GRBs has been established (Metzger 1997; Wijers 1998s& h
detections confirmed the predictions from the fireball te&oal
* E-mail: meliani@rijnh.nl model (Rhoads 1993; Katz 1994; Mészaros & Rees 1997;iVietr
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1997). In this model, a compact source releases a large drabun
energy in a very short timescale, producing a fireball expand
with relativistic velocity. Its internal energy gets fultpnverted to
kinetic energy, leading to a shell expanding with very highdntz
factor. This cold shell continues to expand and interadt tié cir-
cumburst medium, producing a relativistic shock-domidageolu-
tion. As the shell sweeps up the matter, it begins to dedeldriere,
we investigate the details of such propagating relativistiells
with the relativistic hydrodynamics code AMRVAC (Bergmaets
al. 2004). The AMRVAC code (Keppens et al. 2003) is here for
the first time applied to the numerically challenging regivh@igh
Lorentz factor, and we therefore include a variety of tesbfgms,
demonstrating the robustness as well as the limitationsiofom-
putational strategy.

Up till recently, analysis of GRB flows have largely been done
analytically (Shemi & Piran 1990; Sari & Piran 1995; Masma&
Rees 1997; Chiang & Dermer 1999), combined with numerical ap
proaches usually employing a Lagrangian code. These latteks
mainly investigate spherically symmetric GRB scenariagsofovi-
ous computational convenience (Panaitescu et al. 199 7ayahi
et al. 1999; Kobayashi & Sari 2000). Recently, some analjtic
works started to investigate the multidimensional jetcitrce in
GRBs (Rhoads 1997, 1999; Panaitescu & Mészaros 1999g8ari
al. 1999; Kumar & Panaitescu 2000; Panaitescu & Kumar 2003;
Cheng et al. 2001; Oren et al. 2004; Kumar & Granot 2003), and
some numerical simulations emerged as well, but restrictedl-
atively low (order 25) Lorentz factor (Granot et al 2001; G&azo
et al. 2004). Therefore, an important area of current ingasbns
in GRB context is to model the dynamics of narrow jets of rela-
tivistically flowing ejecta. This is motivated by the needréaluce
the total amount of energy released in GRBs, by assuming thes
jets to point towards the observer, as compared to fullyragot
equivalents. This need is particularly clear for the exemptases
of GRB 990123 (Kulkarni et al. 1999), GRB 050820A (Cenko et
al. 2006), and GRB 050904 (Frail et al. 2006).

The detection of polarization (Covino et al. 1999; Wijers et
al. 1999; Greiner et al. 2003; Lazzati et al. 2004) gave @urth
support to the jetlike model. Evidence for narrow collinthteit-

flows in GRBs is sustained also by the achromatic breaks in the

afterglow light curves which was predicted analyticallyh(fds
(1997, 1999); Sari et al. (1999)) and then observed in a lange-

ber of GRBs (Stanek et al. 1999; Sari et al. 1999; Berger et al.
2000; Panaitescu 2005; 2006; Barthelmy et al. 2005). In fBloo
et al. (2003), various GRBs were analysed and in 16 of them,
the combination of these breaks in the spectrum and thekget-|
model was used to deduce theffeztive energy, which was about

E ~ 10ergs. The half opening angle of such jets in GRBs is in-
ferred to be of order few degrees. As a result, the aftergimayoc-

ing shocked region is collimated too, with a similar init@en-

ing angle (Frail et al 2001; Berger et al. 2003; Cenko et al620
Panaitescu 2005; Dar & De R(jula 2004). In our 2D simulatjon
we will concentrate on the afterglow phases in the GRB ei@iut
starting from collimated ejecta, and discuss those dyrareitects
causing opening angle changes in detail. Direct compangtn

the evolution of an equivalent 1D spherical shell is enkglitig in

this respect.

This paper is organised as follows. We start by reviewing the
relativistic hydrodynamic equations. In Section 3, we uliel sev-
eral tests to demonstrate the AMRVAC code potential forisgal
RHD computations. In Section 4, we present our main astrgiphy
cal application to GRB flows in 1D and 2D models.
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Figure 1. One-dimensional relativistic shock problem in planar getsyn
att = 0.36. The solid lines are the analytical solution.

2 RELATIVISTIC HYDRODYNAMIC EQUATIONS

The special relativistic hydrodynamic evolution of a petféuid

is governed by the conservation of the number of particlad, a
energy-momentum conservation. These two conservatios daw
be written as

(eu), =0, (T"),=0. @)

wherep, U = (y,yV), andT* = phu v + pg” define, respec-
tively, the proper density, the four-velocity and the stresergy
tensor of the perfect fluid. Their definition involves the éotz
factory, the fluid pressurg, and the relativistic specific enthalpy
h = 1+ e+ p/p wheree is the specific internal energy. For the
(inverse) metrig”, we take the Minkowski metric. Units are taken
where the light speed equals unity.

These equations can be written in conservative form involv-
ing the Cartesian coordinate axes and the time axis of a flaéd *
Lorentzian reference frame as

U & oF]
j=1
The conserved variables can be taken as
T
U=[D=yp.S=y%hvr=yph-p-yp| . @)
and the fluxes are then given by
T
F = [pyV.y’0hW+ pl.y’p bV - ypv] . 4

wherel is the 3x 3 identity matrix. To close this system of equa-
tions, we use the equation of state (EOS) for an ideal gaghwbi
the polytropic equation with the polytropic ind&x

p=(@-1pe. (%)

At each time step in the numerical integration, the primgitiv
variables p, V, p) involved in flux expressions should be derived
from the conservative variablébsresulting in a system of nonlinear
equations. One can bring this system into a single equatiothé
pressurep,

p+Ip(y(p)?-1)

=0,
r-1

7+ D-vy(p)D - (6)

which, once solved fop yieldsV = T+§+D. This nonlinear equa-

tion (6) is solved using a Newton-Raphson algorithm.
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Table 1. L, errors of the density for the 1D Riemann problem 1 with uni-
form grid shown at = 0.36

Number of grid points L1
200 115%x 101
400 64 %102
800 32x 1072
1600 19x 102
3200 106 x 102

3 TESTING AMRVAC

In view of the challenges in the numerical investigation elar
tivistic fluids, we include here several substantial tesults for
code validation. We performed a large series of tests, sdem
shown in this section. An important subclass of test casesrized

by Riemann problems, whose numerical solution can be cagdpar
to analytical solutions. Other, 2D tests shown here havenowk
analytical solution. Therefore, we compare the resultsupfsim-
ulations with similar results previously obtained by othedes as
documented in the astrophysical literature.

3.1 Onedimensional test problems
3.1.1 Riemann problems

In 1D Riemann problems, we follow the evolution of an initis-
continuity between two constant thermodynamical stateslD
RHD, we then typically find the appearance of up to three non-
linear waves. Generally, one finds a shock wave propagatitag i
the lower densitfpressure medium, a rarefaction wave propagat-
ing at sound speed into the denser medium, and between these t
states, there can be a contact discontinuity. In the teat$dhow,
calculations are done in Cartesian geometry on a spatiahofom
0 < x £ 1. The exact solutions for Riemann problems in relativistic
hydrodynamics are discussed for vanishing tangentialdsfieey
or/andz components for velocities) in Marti & Miller (1994) and
for arbitrary tangential flow velocity in Pons et al. (2000).

In a first, mild test, we assume an ideal gas with polytropic
index 53 and initial constant states characterizedghy= 133,
pL = 100 (left) andpg = 0.66x 1078, pg = 1.0 (right), separated
at the locatiorx = 0.5. The results at = 0.36 are shown in Fig. 1
with a resolution of 100 cells on the base level and 4 levelere/
we also overplot the exact solution. In the table 1, we preten
Ly = Z(Ax;)loj —p(x;) norm errors of the densigy, wherep(x;) is
the exact solution. The accuracy of our result is comparaileat
of Lucas-Serrano et al. (2004); Zhang & MacFadyen (2006).

In a second test, we look particularly int6exts due to non-
vanishing tangential velocities, for two ideal gases withypropic
indexT" = 5/3. We separate two fierent constant statgg = 10°,
pL = 10 (left) andpg = 1072, pr = 1.0 (right). For the trans-
verse velocity we form nine combinations of the paj; and
wgr. As in Pons et al. (2000); Mignone et al. (2005), we take
vy = (0.0,0.9,0.99) in combination withv,g = (0.0,0.9,0.99)c.
The spatial separation between the two states is initiaby=a0.5.
The results at = 0.4 are shown in Fig. 2, where we also overplot
the exact solution using the code in Marti & Miiller (2003).

The relativistic &ects in these tests are mainly thermodynam-
ical in the first mild test, and are due to coupling betweertllee-
modynamics (through specific enthalpy) and kinetic prapegiy
the initial tangential velocities). For small tangentialacity cases,
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we use only a resolution of 200 cells on the base level andeddev
However, for a high tangential velocity case, we use higle as-
olution 400 with 10 levels to resolve the contact discoritinend
the tail of the rarefaction wave. In fact, for a high tangahteloc-
ity at left (in the high pressure state), thifeetive inertia of the left
state increases. This makes the occurring shock move shweer
decreases the distance between the tail of the rarefactiwa and
the contact discontinuity. As also found in Zhang & MacFatye
(2006), it remains a numerical challenge to capture theambilis-
continuity properly, which we only managed here by allowimg
very high dfective resolution.

3.1.2 Shock Heating Test

In another 1D test case, a cold fluid hits a wall and a shock fron
propagates back into the fluid, compressing and heating ties
kinetic energy is converted into internal energy. Behirglghock,
the fluid becomes at rest. This test has an analytical salutio
planar symmetry as considered by Blandford & McKee (1976, a
the jump conditions are

p2 = pr(yi-D(l+1),
_ )/1F+1
P2 = M -1 5
Y1Vi
= I'-1)———. 7
Vsh ( )71+1 ()

These give the post shock pressps@nd density, values in terms
of the incoming density and Lorentz factor, together with shock
propagation velocitys,.

In our test we take the same initial conditions as in the recen
paper by Zhang & MacFadyen (2006), where a cold fluid 10
with a densityo = 1.0 has an impact velocity of = (1.0 - 10°1°).
This corresponds to a Lorentz factpr= 70710675. The tem-
perature after the shock becomes relativistic, and thexefce
take the polytropic indexX’ = 4/3. Hence the shock velocity is
Vsp = 0.33332862. The AMR simulation is done with 20 cells on
the base level and 4 levels on the spatial range & < 1. The
result att = 2, with the reflective wall ak = 1, is shown in Fig. 3.
The exact solution is overplotted as well. In this test, bseaof
the constant state behind the shock, the maximum impacntore
factor that can be achieved numerically is limited only by gne-
cision of the Newton-Raphson subroutine. This test is ingutto
demonstrate its accurate treatment, in view of the inteisitadla-
tions aimed at afterglows in GRBs. Indeed, in the shell-&athe
circumburst medium hits the dense shell with a high Lorestedf.

In a process similar to what is found in the above test, thetlin
energy of the impacting medium is converted to thermal gnefg
the external medium. Viewed in the lab frame, the swept upair
burst medium will have similarly high Lorentz factor and Midrm

a hot shocked layer ahead of the contact interface. Notetladgo
Fig. 3 indicates that our discretization and wall treatrdgs not
sufer from the visible density errors seen in Zhang & MacFadyen
(20086).

3.2 Two-dimensional tests
3.2.1 Arelativistic 2D Riemann problem

A two dimensional square region is divided into four equalaar
with a constant state each. We fix the polytropic inflex 5/3 and
assume free outflow boundary conditions. The relativisticsion
of this test was proposed by Del Zanna & Bucciantini (2002) an
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Figure 2. One-dimensional relativistic shock problems in planamgety with tangential velocities,. The results presented correspond £00.4. The solid
lines are the analytical solution (Pons et al. 2000); froftntteright vy r = (0, 0.9,0.99)c, and from top to bottorwy, = (0,0.9,0.99)c.
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Figure 3. One-dimensional shock heating problem in planar geometry,
where a cold fluid hits a wall located at= 1. The results presented corre-
spond ta = 2. The computational grid consists of 20 zones with 4 levels o
refinement. The solid lines are the analytical solution.

subsequently reproduced by Lucas-Serrano et al. (2004ng&
MacFadyen (2006) and under slightly improved initial caiutis
by Mignone et al. (2005). We repeat this simulation with thme
initial configuration from Del Zanna & Bucciantini (2002)amely

(- v/ v/, p) (0.1,0.0,0.0,0.01),

NwW
(0. wu/C vy /. p) (0.1,0.99,0.0,1.0),

sSw
(0. wu/C vy /c. p) (0.5,0.0,0.0,1.0),

(- v/ v/, p) (0.1,0.0,0.99, 1.0). ®)

The simulation is done with 48 48 cells at the lowest grid
level, and we allow for 4 levels. The result is shown in Fig. 4.

Our result is in qualitative agreement with those resultdipbed,

and shows the stationary contact discontinuities betwe#rS&

and SW-NW with a jump in the transverse velocity. These are
somewhat dtused by the employed TVDLF discretization (Toth &
Odstrcil 2006). A simple and easilyfardable remedy for improve-
ment is to activate many more grid levels. Shocks featuresacr
the interfaces NW-NE and SE-NE, propagating diagonallyhto t
NE region, and an elongated diagonal shock structure fostisea

NE sector recedes into the RHS top corner. In the SW corner, an
oblique jet-like structure forms with a bow shock.

3.2.2 Relativistic jet in 2D cylindrical geometry

Since it is relevant for our 2D GRB simulations, we also pnése
a two-dimensional simulation of an axisymmetric relaticiget
propagating in a uniform medium. We simulate the C2 jet model
from Marti et al. (1997), but with an enlarged domain and ghkr
effective resolution. Our computational domain covers théoreg
0 <r < 15and 0< z < 50 jet radii. Initially, the relativis-
tic jet beam occupies the region< 1,z < 1, with vt = 0.99,
piet = 0.01 and its classical Mach numbbf = 6. In this case, the
jetis super-sonic but its temperature is still classicalye can take
the polytropic indeX” = 5/3. The density of the external medium
iS pext = 1.0. We follow the evolution untit = 130, and this end
result is shown in Fig. 5. We performed the simulation witleso-
lution at the lowest level of the grid set to B00, and allowed for
a total of 5 levels of refinement eventually achieving #ieaive
resolution of 1440« 4800.

In this simulation, the relativistic motion of the flow domi-
nates, the thermal energy is weak compared to the kinetiggne
As a result the external medium influences only weakly tharjelt
the Lorentz factory ~ 7 flow produces a cocoon structure from
the tip of the jet. One also finds a weak transverse expansite o
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Figure 4. Density distribution for the two dimensional shock tubelpem
att = 0.4. With a polytropic indexX” = 5/3, a base resolution of 4848 and
4 AMR levels.
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outflow in accord with what is reported by Marti et al. (1997his v
transverse expansion of the jet is induced by the pressuid: qu 300 ¢
inside the cocoon Begelman & Gin(1989). In our simulation, the ;
average transverse expansion obtained is occurring atiamaésd s

speed ofvy = 0.11c. Moreover, at the contact interface between
shocked external medium and jet material, complex vorstraic-
tures form. These originate from Kelvin-Helmoltz type isiti-
ties, as a consequence of cold fast jet outflow meeting a ntatie s
medium. The average propagation speed of the jet head id toun min=0.021025, max=705.051453
be Q414c, which is in agreement with the one-dimensional analyt-

ical estimate of @2c as given by Marti et al. (1997).

100

log10(rho)

Figure 5. Density distribution for the axisymmetric relativistictjatt =

130. At left, we show the lab frame density, at right, we shbe proper

density in a logarithmic scale. The computational base gpitsists of 9&

300 zones with 5 levels of refinement and the domain size is 36.
3.2.3  Wind tunnel with step

We reproduce here a standard test in the hydrodynamictlitera

namely the forward facing step test from Emery (1968); Wood- 10 Log(p)

' or | SRl N f ]
ward & Colella (1984), but adjusted to the relativistic hydegime g = TR >> ///// y/}///////
as in Lucas-Serrano et al. (2004); Zhang & MacFadyen (2006). 0.8 ///A ////// % A

i visti i i = Y v 7 /

horléc;ntgl rel?tlws_lphc stup(;:rsonl((j: flow eftnhters attllntl_wehg[igat for- o i 7 % ////i//// ///////
ward facing step. The test was done with a resolutionBID zones 6 : 7 ’ Iaas
with 4 levels. The size of the tunnel is®x < 3and 0O y < 1. > C J‘V‘\ o - 27417 [ Tﬁ‘
The step is @ in height and its position is at= 0.6. Itis treated as 0.4 ;% ANV A%ﬁf#’ 717 7T
a reflecting boundary. The upper boundary and lower bourfdary i s aral A el
x < 0.6 are also both reflecting. However, the left boundary is fixed 0.2 = o= 5| ! ! 1 Seseas =
at the given inflow and the right one has free outflow. Iniyiathe oo =K {, — : ! ! : ! : .
whole computational domain is filled with ideal gas with= 7/5 0.0 05 10 15 20 25 3.0
with a densityp = 1.4 moving atv, = 0.999, i.e., with a Lorentz x

factory = 2237. The Newtonian Mach number is set to 3. The

result of our simulation is shown in Fig. 6 at tirhe= 4.26. In this

test, the relativistic flow collides with the step, as a reaukverse Figure 6. Density distribution, in logarithmic scale, for the forwafacing
shock propagates back against the flow direction and thiskstes step problem, at= 4.26.

flects from the upper boundary. A Mach stem forms and remains

stationary. The result of our simulation is comparable t@awib

reported in Lucas-Serrano et al. (2004).
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4 GRBSAND MODELSFOR THEIR AFTERGLOW
PHASE

A popular model for GRB flows is known as the fireball model. In
this model, GRBs are produced by a relativistic outflow feilny

a violent event near a compact object. A large amount of gnerg
is promptly released by the compact source in a region witallsm
baryon loading (for a review see Piran (2005)). Initiallypshof the
energy of the flow is in the form of internal (thermal) energiie
shell expands rapidly converting its internal energy teekin After
the acceleration phase is complete, the shell is cold anésnwith
relativistic speeds.

This cold shell interacts with the circumburst medium, pro-
ducing strong shocks. Our simulations will consider theatgits

one has to consider radiative shocks. If either of the previmon-
ditions does not hold, the radiative losses in the shocksaual.
Here, we assume that the radiative losses are dynamicafhpon-
tant, i,e., the shocks are adiabatic throughout these ationk.

4.1 1D isotropic shell evolution

In this simulation, we consider an ISM with uniform numbende
sity nism = 1cnt3. Many GRB afterglows (more than 25%) seem
to be produced in such constant density medium (Chevaliei & L
2000; Panaitescu & Kumar 2002; Chevalier et al. 2004). Tais ¢
stant density medium can be the resultant of a Wolf-Rayepsta
genitor, with its surroundings shaped by a weak stellar v(iah
Marle et al. 2006). Initially we set a uniform relativistibedl at

from this phase onwards. As the shell sweeps up mass from ther, = 10'cm from the central engine, since according to Woods

external medium, the kinetic energy in the relativisticlbisegrad-

ually transferred to kinetic and internal energy in the $ledcam-
bient medium. Moreover, the shell itself gets traversed isvarse
shock, which in turn converts the kinetic energy of the stwlh-

ternal energy.

The observed afterglow emission that follows the prompt GRB
emission is believed to come from synchrotron (with possibt
verse Compton contribution) emiting electrons that arekecated
in the forward and reverse shocks (Sari et al. 1998; Galanah et
1998). In the initial phases of the shell-ISM interactidm elec-
trons can be in the fast cooling regime (i.e. their coolimgescale
is shorter than the expansion timescale) and, therefalgteadti-
ciently most of the energy injected to them. Furthermormast of
the energy dissipated in the shocks accelerates the elsctizen

& Loeb (1995) the interaction of the shell with the ISM became
appreciable at this distance. The shell has an initial Liaréactor
of y = 100 (ay > 100 is in accord with a shell which is optically
thin to gamma-rays (Woods & Loeb 1995; Sari & Piran 1995)3, an
energy

E = 10°%rgs= 4ny? R36 psheiC?, 9)

where ¢ stands for the lab-frame thickness of the shell set to
5 x 10%%cm is of the order of the expected value for a fireball
& ~ maxcAt, Ry/y?), whereAt is the duration of the GRB. The
ISM and the shell are cold, and the initial pressure is s@id@ =
10-3nism Mp €2 and Pspenn = 1073nghenm, €2 respectively. Note that
this implies a huge initial contrast in the density meastrethe
lab-frame between the shell and the 1SMne/Dism ~ 10°, and
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Figure 10. The variation of the maximal Lorentz factor in the propa-

gating shell-ISM structure with time a) when the shell pagtas from
Ro = 10%cm to R = 300x Ry b) when the shell decelerates following
the Blandford-McKee profile.

this presents an extreme challenge from a computationat pbi
view. Initially, the energy of the shell is then mainly kifetWe use
a constant polytropic indeK = 4/3, as the interaction shell-ISM
will be dominated by the forward shock, where the tempeeatdir
the shocked ISM becomes relativistic.

In this simulation we use anffective resolution of 1536000
cells corresponding to the highest grid level 10 allowed. We

© 2007 RAS, MNRASDQO, ??7-?7?

the full AMR capabilities in this simulation, since we siraté on

a domain of size [, 300]x 10'°cm, with 30000 grid points on the
lowest level. Att = 0, the shell itself is then only resolved from
grid level 6 onwards, when we use a refinement ratio of 2 betwee
consecutive levels. The initial shell is resolved by abdut@lls in
grid level 10 (later in the dynamical evolution this mearet there
are many more grid points throughout the widening strugtivée
use this very highfective resolution to avoid any numericaffdi-
sion which may cause an artificial spreading of the shell. Mgeie
that throughout the entire simulation, grid level 10 is\atttd and
concentrates fine grids on both the forward shock and resérsek
regions. Both are very important to determine the precimeg of
the deceleration.

In Fig. 7, we show snapshots taken at lab-frame time
2.2 x 10°s corresponding to an early time in the entire simulation,
and in Fig. 9, we show snapshots taken at ttmel.5 x 10’s cor-
responding to a time when the shock is fully developed, wé wil
concentrate our discussion mainly on this figure 9. Thesedigu
demonstrate that we resolve all four regions that chariaeténe
interaction between an outward moving relativistic sheidl ahe
cold ISM. From right to left, we recognize (Fig. 9) (1) the ISM
at rest, (2) the shocked ISM that has passed through the ifdrwa
shock, with its Lorentz factor raised tg, ~ 30. This swept-up
ISM gets compressed at the front shock and its number density
reacheqy ~ 75cnT3 ~ ”r(—f)l*l (Sari & Piran 1995). These two
values correspond to the analytical estimate given by ¢dofThe
front shock propagation. Region (3) represents part of nitel
shell material which is shocked by the reverse shock. Thersev
shock propagates back into the cold shell, reducing itsrtariac-
tor and converting its kinetic to thermal energy. Transfegreergy
from the initial cold shell thus occurs both at the forward #me re-
verse shock. Regions (2) and (3) are separated by a consaoneli
tinuity (Mészaros & Rees 1992). At this spherical conwatace,
the longitudinal velocity (Lorentz factor in 1D case) an@gsure
remain constant, but there is a jump in density. Furthermare
gion (4) is the unshocked cold material of the shell, movinthw
a Lorentz factoty) = 100. The weak thermal energy of the shell
interior itself did induce a slight expansion in the thickeef this
part of the shell.

The reverse shock separating region (3) and (4) prop-
agates into the cold shell with a Lorentz factors =
Y@ Y@ (1-VigViay/?) ~ 25. This reverse shock is Newtonian
inefficient in raising the thermal energy content as is shown in
Fig. 8 (left panel), where we draw the specific thermal energy
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in the shocked ISM and shell when the shell reaches a distanceincreased dfticiently and the resulting radial thermodynamic pro-

R ~ 6.5 x 10'%cm. The reverse shock remains Newtonian until it
reaches a distance from the GRB sourcRef 3.8x 10'7cm. Then

it becomes mildly relativistic untiR ~ 4.3 x 10’cm where the
reverse shock becomes vemfigient to convert the kinetic energy
to thermal energy (see Fig.8 at right). Beyond this lattetatice,
the density of the unshocked shell pag has decreased in accord
with the spherical expansion of the shell dgy < y(24)p|5M. As a
result, the reverse shock becomes relativistic. This heha/char-
acteristic for an initial thin cold relativistic shell ddeeating in a
constant density external medium. In fact, until the outiyarmop-
agating shell reacheR ~ 3.8 x 10*’cm, the shocked ISM matter
is hotep) ~ 30.0p() (Wherey(z = 30 corresponds to the analyti-
cal solution for the relativistic forward shode) = (v — 1) p2),
while the shocked shell material which hgg = &y is cold, since
g3) ~ 0.01p). When the density in the non-shocked shell (&)
decreases enough due to spherical expansion, the Loreitz ¢d
the reverse shock increases and the last part of the shobhk#ld s
becomes hots) ~ p().

There is another region (5) indicated in the figures behied th
shell. The density and the pressure in the region (5) aresregll
with Nsymin < 107°cm™2 and peymin < 10°°myc2. Therefore, the
region (5) is in the numerical point of view a vacuum. Thisioag
(5) is not of strong interest for the physics of the afterglowt it
is computationally challenging to resolve the interfacenveen the
regions (4) and (5) where the ratio of the lab frame densitywéeen
the two reacheB(4)/Ds) ~ 10,

The near-total deceleration of the shell only takes placenwh
the two shocks in the shell-ISM interaction manage to cdraer
important fraction of the kinetic energy of the shell to thet
energy (and thefBciency of this conversion depends on whether
the reverse shock is relativistic or Newtonian, as disaisb®ve),
while the rest is transferred to the swept-up ISM in the fofrkio
netic and thermal energy. In the first phase of the deceteratie
maximum Lorentz factor of the shell decreases gently frothattG
distance oR ~ 2.5x10'cm to 80 at a distance & ~ 4.3x10cm.
However, only at the latter distance aB4< 10'’cm, a sudden de-
crease of the maximum Lorentz factor of the entire configomat
fromy = 80 toy = 30 takes place. This fast drop of the maxi-
mum Lorentz factor as seen in Fig. 10 coincides with the mamen
at which the reverse shock reaches the back end of the cdlg she
thereby converting its kinetic to thermal energy (Fig. 9).fact,
when plotting the maximal Lorentz factor as a function ofatiee,
initially we always observe the Lorentz factor of the unsteat
shell matter. As soon as the reverse shock has crossed ihe ent
initial shell, we start to follow the evolution of the Lorenfactor
of the shocked ISM (at the forward shock) where the maximum
Lorentz factor is 30 at that particular moment.

After this phase, the shell structure continues to deceddna
transferring its kinetic energy to shocked ISM matter at fibre
ward shock. However, as seen in Fig. 10, it still takes a perta
time before the variation of maximum Lorentz factor now ear
terizing the shocked ISM matter follows the self-similanbytical
solution for blast-wave deceleration as put forward by Bfard
& McKee (1976). From about a distance o2Xx 10'%cm, our nu-
merical solution starts to follow the analytical solutiaegisely. In
fact, after the reverse shock traversed the entire initiallsa for-
ward traveling rarefaction wave propagates through thiesestruc-
ture thereby slowing it down while transferring most of tinegy
to shocked ISM regions. This structure does not follow tHé se
similar prescription and causes the initiaffdience. In the end, the
distance between the forward shock and the contact discotyti

files in between become fully described by the Blandford-eK
analytical solution. The Lorentz factor predicted by thar®iford-
McKee solution behind the forward shock (for an adiabatimcgin
isvem = (E/pismC®R8)Y2 o« R"%2, The prediction of the Blandford-
McKee solution for the Lorentz factor of the flow is also pattin
Fig. 10 and the agreement with the results of the simulatitimese
later stages of the decelation is good.

Eventually, we enter into the mildly relativistic regime the
blast wave evolution. The transition to the Sedov-Taylaxgghoc-
curs beyond the simulated distariRe 300x 10'%cm, since we still
have a Lorentz factor of about 3 at the end of the simulatidve T
Sedov-Taylor distance we find is close to the analyticahesie
given byl ~ (3E/4npism €22 ~ 5 x 10%¥cm.

4.2 2D modeling of directed gecta

Precise analysis of the afterglow phases requires to evalieer-
ically confined ejecta in more than 1D, propagating in aijes-|
fashion into the ISM. We now present axisymmetric, 2D simula
tions of a relativistic cold shell propagating in uniformMSwith

a number densityygy = 1cnT3. In this work, we investigate the
uniform model jet (Rhoads 1999). The shell density and gnisrg
set constant throughout the shell, and we take it to correbpo
an isotropic spherical shell containing an equivalentriggt en-
ergy Eso, = 10P'ergs and a Lorentz factgr = 100. To make the
2D computation feasible, we now start the simulation witthalls
thicknesss = 10%cm at a distanc&®, = 10'%cm from the cen-
tral engine. In the initial setup the shell occupies an aanggion,
with half opening angle of the shell equal@c= 1°. This angle is
rather small with respect to those typically deduced frondeto
ing of the optical light-curve breaks but still in agreemeiith the
most collimated GRB flows (Bloom et al. 2003; Panaitescu 2005
With the choice of a rather narrow jet, we expect the 2I2as to
appear earlier and to be more pronounced with respect toea-sph
ical shell with the same isotropic equivalent energy. Nbte &s a
result, this jet like outflow has a decreasetketive energy in the
shell Ejet = (92/2)Ei50.

The AMR run uses 4 grid levels, taking 483000 at level 1,
but with refinement ratios of 2, 4 and 2 between consecutivede
eventually achieving anfkective resolution of 640& 96000. The
domain is [04] x [0.3,30] in Ry units, as we specifically intend
to model in detail the most dramatic phase of decelerati@r pr
to the Blanford-McKee evolution. Note that we initially ey >
1/6, which appears to be the case for a GRB jet. Beamiterts
are invoked to explain the observed steepening in the deghty |
curve resultant from the transitign> 1/6 (indistinguishable from
an isotropic explosion) t¢ < 1/6 (Panaitescu & Mészaros 1999;
Panaitescu & Kumar 2002; Panaitescu 2005). With these setup
can verify from our high resolution simulation whether ugitoes
corresponding to the transition~ 1/6, only the isotropic energy
Eiso is relevant for the dynamics and the resulting emissiora(Pir
2000; Granot 2005).

The initial velocity of the shell is purely radial. Note thaom-
pared to the 1D isotropic case presented in the previoumsetie
2D simulation starts with an initial condition containingsk en-
ergy. This is done for mere practical reasons: we wish to kieep
computation feasible within two week’s execution time orirgke
processor. Due to this lower energy content, the deceberalis-
tance will be smaller by about one order of magnitude sinse le
swept-up ISM mass is flicient to decelerate the shell. This re-
duces the need for resolving many decades of propagatitandes
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as measured in units of the initial shell thickness. In faet 1D
equivalent isotropic case with the same energy shows a sudize
crease of the maximum Lorentz factor of the deceleratindigon
ration that corresponds to the reverse shock crossing afibiéat
R ~ 9x10cm. This happens well before the simulatedi®’cm.

Fig. 11 shows at the (top), the sound speed contour, and the
density distribution in a logarithmic scale in the (lefthdathe
Lorentz factor in the (right). At the bottom, a zoom in theiogg
around the shell is shown in the (left), the sound speed aad th
lateral velocity, in the (right) the Lorentz factor, and et(cen-
ter) a zoom only on the shell, the density and Lorentz facter.
in the 1D case, at first the shell propagates with a constari-ma
mum Lorentz factor, and this is accompanied by a weak spread o
the shell. Part of this radial shell widening in the bottont p
the shell is &ected by the creation of a very low pressure and den-
sity region below the shell (also occurring in the 1D sceamaif his
near-vacuum state remains at the rear part as the shell raness
at the specified Lorentz factor. In this 2D simulation, thehotked
shell also spreads laterally with an initial transverseigumtal) ve-
locity, since the shell is launched with a pure radial velocrhe
corresponding maximum initial lateral velocity of the uosked
shell isvr = 0.0175c. However, the shocked, swept up ISM matter
spreads laterally much faster, due to its high thermal gneog-
tent. Initially, that shocked ISM part spreads with a comgwe-
locity of vr ¢, ~ 0.4c, which is less than the maximum sound speed
allowed by the polytropic equation of statg V3. Due to this fast
sideways expansion of shocked shell and ISM, the mass oSttie |
hit by the shell grows faster thar. Therefore, the deceleration of
the shell starts earlier than in the isotropic case, seeEigHis re-
sultimplies that the transition from the phase whEggis relevant,
to the phase wherg; is relevant in the dynamics takes place when
the shocked ISM and shell start to spread laterally muclerfalsan
what corresponds to pure radial (ballistic) flow.

In the last part of the shell-ISM deceleration phase, when th
reverse shock has crossed the entire initial shell mate¢hallat-
eral velocity of shocked shell material reaches a comoviegd of
V1o ~ 0.7¢. This means that we do find that the lateral velocity can
be bigger than the sound speed in the medium which is in accord
with the analytical result of Sari et al. (1999). This is atledvith
numerical findings as those found in Cannizzo et al. (2004jchv
employ a much reduced resolution as compared to our AMRteesul
(at low resolution, we do obtain a reduced lateral spreadaboc-
ity). As a result of this fast lateral spread of the shockedenia,
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Figure 12. The variation of the maximum Lorentz factor evolution in 1D
and 2D scenarios compared.

expansion remains weak for a while. Later on, its laterabespn
speed goes up to the7@ mentioned above, as the reverse shock
becomes relativistic and the material through which theckbod
shell expands laterally has already been brought to lowesities

by the shocked ISM interaction.

The variation of the maximum Lorentz factor is less sud-
den than in the equivalent 1D spherical explosion, as dfieahtin
Fig. 12. The part of the shell most distant from the symmexig a
decelerates before the more internal part. The shell swgep®re
matter than in the corresponding isotropic case in the eatg@arts
due to the lateral spreadingfects discussed. In fact, in this simu-
lation we may draw the analogy between the shell interaatitim
the ISM and simulations of relativistic AGN jet propagatiimmo
an external medium. As in those cases, the energy is traedfer
the ISM through a bow shock structure. The changing 2D siract
of this shock leads to fierences in the shocked ISM mass loaded
on to the shell. As stated earlier, only a fraction of the ISkhin
the opening angle of the shell is swept up, and an importahbpa
ISM matter gets pushed away laterally as the thin radialhfioed
shell advances.

The resulting behavior is clearly influenced by these 2D ef-

distinct diferences occur in the deceleration stages as compared tofects, and is the reason why the maximum Lorentz factor of the

the isotropic case. This result is very important, as it shomat
the lateral spreading of the shell is not related only to tbeehtz
factor of the shell but to the type of the reverse shock. Incaum-
putation, in an early phase the reverse shock is Newtonidrihan
expansion of the shocked shell part is modest. However, atea |
phase the reverse shock becomes relativistic and this ledaster
lateral spreads. However, as the forward shock is alwagsivis-
tic, already in an early stage the shocked ISM spreads wgtinVe-
locity. The overall spreading of the shocked ISM and shoaitesl
configuration can, thus, be quite complex and rather morkveso
than the one that semi-analytical models (Rhoads 1999;teana
& Mészaros 1999; Sari et al. 1999; Piran 2000) predict.

Only that part of the ISM found within the solid angle of the
expanding shell is swept up, and this opening angle changes d
to the spreadingfects just discussed. In our 2D simulation, we
found in analogy with the 1D (higher energy) case from abthe,
the reverse shock is initially Newtonian, so the thermalrgyén
the shocked part of the shell does not increase a lot andtéiala

configuration starts to decrease earlier than in the 1D siceria
an isotropic scenario all swept up mass of the ISM remainsoint f
of the initial shell where most of the energy of the shell intawu-
ally transferred to shocked ISM. However, in the jet-likplkasion,
the shocked ISM and shell expand laterally leading to ictéya
with more ISM material, but the main part of this ISM mategats
deflected about the shell. As seen in Fig 11, we find rather temp
flow patterns trailing the thin shell. Hence, the mass aedrein
to the shell in fact decreases as compared to the equivaleat |
isotropic scenario. Therefore, less energy is transferoatinually
to the shocked ISM.

One interesting characteristic of the maximum Lorentzdiact
of the beamed shell at radi > 7 x 10'5cm is the “bumps” that it
shows as function of radius. These modulationg.gf are a result
of rapid internal motions of the decelerating configuratiamised
by the complex shell-ISM interaction. In view to the verytriand
unexpected early afterglow phenomenology revealed b$WeT
satellite (see, for example, Zhang et al. (2006)), it isregdng to
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study whether these proper motions can cause a significasiit-mo
lation in the emitted radiation expected from these flows.

In this simulation, we find no real indication of a strong
change in lateral spreading of the shell when the Lorentz fac
tor drops down toy, = 1/6 ~ 57 (Rhoads 1999; Panaitescu &
Mészaros 1999). In fact, an important change is produeéest,|
when the Lorentz factor of the shell becomes smaller thawBie
the lateral velocity of the shell reaches,, ~ 0.7c. As pointed out,
this coincides with the time when the reverse shock becatae re
tivistic and almost crossed the initial shell entirely. éfthis phase
of rapid lateral spread, we find that the spread out shellldextes
faster, as it accumulates more matter (Fig. 11). More sitimuia

ISM. We have shown with a high resolution simulation of j&el
GRB models in their afterglow phase that this lateral exjgems
goes through various phases.

First, the shell spreads only with its initial lateral vetgan-
til it accretes enough ISM matter. In this phase, the shod&ad
spreads laterally with a velocity near the sound speed. Merve
the reverse shock propagates in a Newtonian fashion thrthegh
shell, thus having a smalffeciency in the conversion of the kinetic
energy of the shell to thermal energy, hence the expansitheof
shocked shell is still weak. Only in a later phase when thensay
shock becomes relativistic, the lateral expansion of treclsid
shell increases drastically and reaches a high velagity 0.7c.

with different values for the shell opening angle and thickness are The transition from slow to fast lateral spreading of thellsise

to investigate how these parameteffect the phase of the deceler-
ation where the lateral spreading of the shell becomes itapbor

5 CONCLUSIONS

In this paper, we presented and applied the AMRVAC code in its
extension to relativistic hydrodynamics. The adaptive mregine-
ment is particularly useful for simulating highly relastic flow dy-

namics. We always used the robust TVDLF sheme, and this shock

capturing method together with higtffective resolution delivers
numerical results that can rival or even improve other higitep
methods. As is well-known, fliculties in special relativistic hy-
drodynamic simulations result from the non linear couplivey
tween diferent components of the velocity by the Lorentz factor
and also the coupling between inertial and thermodynanviés.
demonstrated that Adaptive Mesh Refinement (AMR) is theg ver
useful to resolve the associated very thin structures phopé/e
tested the code ability with stringent recent test probleoitected
from the astrophysical literature, including 1D and 2D shade
problems, an ultrarelativistic flow reflecting of a wall, datévistic
variant of a forward-faced reflecting step, and 2D astrojolayget
propagation.

We used the fireball model to investigate 1D and 2D after-
glow phases in GRBs. In 1D, we examined the evolution of a cold
relativistic shell with a Lorentz factor of 100 in uniform aiem.

In this simulation we discussed details of the internalcite of
the evolving shell-ISM ejecta and compare them with anedyti
estimates. We followed the evolution of this isotropic @gibn al-
most all the way into the classical Sedov phase. At all times,
resolve the various regions that characterize this interac\We
quantified and discussed the precise deceleration of thgvistic
shell. When most of the initial energy of the shell is transd to
swept-up shocked ISM (this occurs at the forward shock) dire
celeration of shocked ISM is eventually well described tgyrila-
tivistic Blandford-McKee self-similar solution. Henceetlh.orentz
factor of the forward shock decreasesRad?.

We investigate also the afterglow phase for a beamed 2D. shell
In this model, we discussed analogies and importafier@inces
with the 1D model. The interaction of a confined relativistiel|
with the ISM is characterised by the appearance of a bow shéek
showed how ISM material is laterally pushed out, thus desinga
the amount of accumulated matter in front of the shell neaattis.
The part of the shell furthest away from the axis decelertites
faster than in a 1D spherical case. Although the decelerafithe
shell starts early as compared to an equivalent isotrope,dhe
deceleration of the inner part of the shell is slow due to tleakv
accreted ISM matter in front of the shell. The thermal enefghe
shocked ISM increases and induces a lateral spread of thiketh

© 2007 RAS, MNRASDQO, ??7-?7?

thus related to the transition from Newtonian to relaticiseverse
shock propagation. However, as the forward shock is alwelgs r
tivistic the shocked ISM spreads laterally faster.

The 2D simulation has revealed rapid internal motions in the
decelerating configuration. It is possible that these mstiesult in
modulations in the afterglow emission. In future work, wieird to
use these and similar simulation results to compute thediptions
for the precise afterglow spectral evolution.
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