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Abstract. The question of the detection of gravitational waves using time-frequency

distributions is addressed. Strategies based on line integration are discussed with

respect to optimality and adequacy of a representation. An effective implementation

by means of reassigned spectrograms is proposed.

1 A model for gravitational waves

It is generally admitted that the most promising source of detectable gravi-
tational waves should be produced by the coalescence of very massive binary
systems which is the only situation we will consider here. In a first (Newtonian)
approximation, an explicit form can be given for the expected waveform. Up to
some unknown phase, it can be expressed as the real part of the complex-valued
signal [11, 10]

x(t; t0, d) = A (t0 − t)−α e−i2πd(t0−t)β

U(t0 − t), (1)

with α = 1/4, β = 5/8 and U(.) the unit step function. In this expression, t0
is the coalescence time and d and A are constants which mainly depend on the
individual masses of the objects and, of course, on other geometrical quantities
such as the distance of the binary from earth or the relative orientation between
the wavefronts and the detector.

Considering (1) as a chirp, its frequency spectrum can be obtained by means
of a stationary phase approximation, leading to the following result [4, 10]:

Xr,k(f) = C f−(r+1) eiΨk(f) U(f), (2)

where Ψk(f) = −2π
(
cfk + t0f + γ

)
, k = −5/3 and r = 1/6. From this result,

it is possible to introduce the group delay, which basically locates the time of
arrival of each frequency, tX(f) = −1/(2π)dΨk/df = t0+ckfk−1. The values of
c and C depend on the individual masses of both objects of the binary through
a combination referred to as “chirp mass” [11].

It has to be noted that this approximation is valid only in a frequency
bandwidth which can be quantitatively determined [3] by an upper-bound of
the relative approximation error written as a integral remainder [7].



2 Detection scheme

2.1 Optimal filter

Signal detection is usually considered from the point of view of the binary
hypothesis testing problem (see, e.g., [13])

H0 : r(t) = n(t) ;H1 : r(t) = n(t) + s(t),

where s(t) is the reference signal to detect (supposed to be known and of finite
energy over the observation time interval), n(t) is some additive noise and r(t)
is the available observation upon which the decision has to be taken.

Given this framework, designing an “optimal” detector depends not only
on the a priori knowledge one may have on the signal and on the noise, but
also on the choice of a criterion for optimality. A relevant concept in such a
search for optimality is that of “likelihood ratio test” (LRT), which essentially
consists in evaluating a test statistic based on conditional probability density
functions of the observation, comparing it with a threshold, and deciding that
the expected signal is indeed present when the threshold is exceeded.

For a sake of simplicity, n(t) will be assumed to be zero-mean, Gaussian, and
stationary with a power spectral density equal to Γn(f). We are here interested
in the situation where the expected signal is expressed as s(t) = x(t; θ) eiγ ,
where θ is a vector of unknown parameters that we may wish to estimate
and γ some unknown random phase uniformly distributed over [0, 2π], that we
would like to eliminate. In this case, the notion of LRT has to be extended
to that of generalized LRT (GLRT) which, after some manipulations, simply
reduces to

Λw(r) =

∣∣∣∣∣
∫ +∞

0

R(f) X(f ; θ)
Γn(f)

df

∣∣∣∣∣
2

. (3)

The strategy invoked here is exceedingly simple, since it only amounts to
correlating the observation with a replica of the expected waveform (“matched
filtering”). Because of the corrupting random phase, the optimum GLRT detec-
tor turns out, in fact, to coincide with a matched filter followed by an envelope
detector, a structure referred to as “quadrature matched filtering.” [13]

2.2 Time-frequency formulation

In the case where the signal to detect X(f ; θ) is a chirp, a reformulation of the
optimal detector (3) can be given via a path integration in the time-frequency
plane. This results from the combination of two ingredients: (i) the existence of
a unitary time-frequency distribution which then satisfies a Moyal-type formula
such that the squared inner product (3) can be equivalently expressed in the
time-frequency plane, (ii) the perfect localization of the corresponding time-
frequency distribution along the group delay of the chirp we would like to
detect.



As far as the perfect localization along the specific group delay of the chirp
(2) is concerned, the only solution for the time-frequency distribution is the
so-called Bertrand distribution [2] :

P
(k)
X (t, f) = f2(r+1)−q

∫ +∞

−∞
µk(u) X (fλk(u)) X (fλk(−u)) ei2πtfζk(u) du, (4)

with ζk(u) = λk(u)−λk(−u), µk(u) = ζ̇
1/2
k (u) (λk(u) λk(−u))r+1 and λk(u) =(

k(e−u − 1)/(e−ku − 1)
)1/(k−1). Unfortunately, this distribution (referred to as

“active”) is not unitary when k 6= 0. It is however possible to introduce a dual
(“passive”) distribution P̃

(k)
X by simply changing µk(u) in (4), thus leading to

the Moyal-type formula∣∣∣∣∫ +∞

0

X(f) Y (f) f2r+1 df

∣∣∣∣2 =
∫ +∞

−∞

∫ +∞

0

P̃
(k)
X (t, f) P

(k)
Y (t, f) f2q dt df.

Together with the perfect localization property of P
(k)
X , the test statistic (3)

can therefore be rewritten as

Λw(r; t0, c) = C2

∫ +∞

0

P̃
(k)
Z (tX(f), f) fq−1 df. (5)

where Z(f) = R(f)f−(2r+1)/Γn(f).

2.3 Simplifications

The exact formulation (5) involves a very heavy computational burden and, in
order to end up with a feasible solution, it is necessary to consider simpler, yet
accurate approximations. Whereas such a simplification may not be possible
in the general case, it turns out that it can be effectively achieved in the spe-
cific case of gravitational waves, thanks to the specific values of the physical
parameters which are involved.
From passive to active distributions. Due to low-frequency (seismic noise)
and high-frequency (photon noise) limitations, the effective observation band-
width is necessarily restricted to some bandpass frequency interval (typically
[50Hz, 500Hz]). Within this frequency band, we can consider in a first ap-
proximation (see, e.g., [8]) that the power spectral density Γn(f) of the ob-
servation noise n(t) has essentially a continuous background which behaves as
Γn(f) = σ2 f−ε, with ε ≈ 1.

Taking this information into account, a narrow-band approximation of P̃
(−5/3)
Z

leads to a new expression for the detector (5) which only involves the active
Bertrand distribution of the observation:

Λw(r; t0, c) ≈
C2

σ4

∫ +∞

0

P
(−5/3)
R (tX(f), f) fq+2ε−11/3 df. (6)

From active distributions to reassigned spectrograms. Given the sim-
plified structure (6), the final problem reduces to finding some accurate and



easy-to-compute approximation to the Bertrand distribution P
(−5/3)
R (t, f). Since

the key feature of this distribution is to satisfy the perfect localization on
“matched” chirps, the solution that we propose is to replace it by a reassigned
spectrogram [1] SX(t, f) which, when applied to the same power-law chirps, is
known to be approximately “Dirac” along the corresponding group delay line.
The effectiveness of this approximation is illustrated in [6]. The final form of
the approximated optimum detector then reads

Λw(r; t0, c) ≈
C2

σ4

∫ +∞

0

SR (tX(f), f) f−1/3 df.

3 Simulations and perspectives

Figure 1 presents two different examples based upon one of the typical situa-
tions discussed in [8]. Both examples assume that the binary consists of two
objects of 1M� and 10M� (coalescence time set to t0 = 0). The binary is
located at and distance of 200 Mpc from earth in the first example (Fig. 1a)
1 Gpc in the second one (Fig. 1b). Since the distance between the binary
and earth changes only the signal amplitude, the signal to noise ratio (SNR)
is the only parameter which has been modified between these two examples.
The simulation was run by corrupting the data with Gaussian additive noise,
with ε = 1 and σ2 = 0.7 × 10−42/Hz over a frequency range of [50Hz, 500Hz].
The proposed strategy, based on a reassigned spectrogram, does not reach the
ideal performance predicted by the matched filter theory, because of the lim-
ited accuracy of the different approximations which have been involved in its
derivation. However, the figure evidences that it clearly allows for the detection
of the chirp and that it also over-performs a crude path integration based on a
standard spectrogram. Beyond detection, an estimation of the chirp mass can
be achieved when this parameter is unknown (see Fig. 2) by applying system-
atically the same strategy over a number of integration paths corresponding to
different chirp masses. The complexity of this approach can be reduced by in-
troducing a hierarchical strategy based on time-frequency ribbons (see Fig. 3).
From another perspective, replacing integration curves by ribbons also offers a
way of making the detector more robust in cases where the used reference would
be slightly mismatched to the actual one (e.g., Newtonian vs. post-Newtonian
approximation).

References

[1] F. Auger and P. Flandrin, “Improving the readability of time-frequency and
time-scale representations by reassignment methods,” IEEE Trans. on Signal
Proc., SP-43 (5), pp. 1068–1089, 1995.

[2] J. Bertrand and P. Bertrand, “A class of affine Wigner distributions with ex-
tended covariance properties,” J. Math. Phys., 33 (7), pp. 2515–2527, 1992.



−0.2 −0.15 −0.1 −0.05 0 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) − detector output

delay (s)
−0.2 −0.15 −0.1 −0.05 0 0.05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) − detector output

delay (s)

Figure 1: Comparison between three different detectors with two dif-
ferent SNR’s (see Sect. 3): squared envelope of the output of the matched
filter (dashed-dotted line), time-frequency strategy based on a line integration
over either a classical spectrogram (dashed line) or its reassigned version (solid
line). In order to make appear what is gained in terms of contrast, the maxi-
mum of each curve has been arbitrarily normalized to unity.
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Figure 2: Joint detection-estimation for gravitational waves. In the
case where the chirp mass M� is unknown, different line integrations (similar
to that of Fig. 1, but over a number of different time-frequency curves) have
to be performed, here on the reassigned spectrogram. This results in a surface
whose maximum allows for the detection of the gravitational wave (when it
exceeds some prescribed threshold) and for the estimation of both the time of
coalescence and the chirp mass (actual values are indicated with dashed lines).
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Figure 3: Hierarchical time-frequency detection strategy. The idea is to
replace a direct systematic search among a set of chirp masses by an iterative
procedure in order to reduce the computational cost. At each step, the inte-
gration is performed over two adjacent time-frequency ribbons whose supports
are determined by given chirp mass intervals. A maximum energy criterion is
then used for selecting the ribbon over which the procedure is iterated.
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