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Abstract. The aim of this paper is to review some basics on time frequency analysis.

Starting with linear decompositions, a natural generalization of the Fourier transform,

we then present different classes of bilinear energetic distributions and their reassigned

extensions. We finally motivate the interest of these tools, showing how they can help

at simplifying some signal processing schemes, with special emphasis on the detection

problem. All along the paper, the Newtonian model for a certain type of gravitational

waves serves as an illustrative example.

1 Time versus frequency representations

1.1 The Shannon and Fourier representations of a signal

The Shannon representation. One very natural way of describing a signal
x1 is to use its time representation,

x(t) =
∫

x(u) δ(u− t) du = 〈x, δt〉, (1)

where δ(t) is the Dirac distribution localized at time t = 0. This representation
is also referred to as the Shannon expansion and corresponds to the expansion
of the observation x onto a continuous basis generated by a set of time-shifted
versions of a perfectly time-localized analyzing function.
Then, the Shannon representation appears very natural as it depicts the signal
in terms of waveforms which carry most of the information about the physical
system that originated the observation. The example presented in figure 1–a
shows the expected gravitational waveform produced by the coalescence of a

1In this paper, we deal with the vector space L2(T ) of finite energy signals
∫ T

0
|x(u)|2 du <

+∞, where T is the observation interval. Also, we consider time signals, which means that
the observation space (or direct space) is parameterized by the time variable.
Unless specified, integrals run from −∞ to +∞.



massive binary system, under Newtonian approximations. This wave corre-
sponds to the real part of the complex-valued signal [11] :

x(t; t0, d) = A (t0 − t)−α e−i2πd(t0−t)β

U(t0 − t), (2)

with U the Heavyside step function, α = 1/4, β = 5/8, t0 the coalescence time
and d, A physical constants. This example clearly evidences that the instanta-
neous amplitude of the signal envelope increases with time while the period of
the oscillations converges toward zero as we reach the coalescence time.

The Fourier representation. Another very standard and useful way of
representing a signal x is the so-called Fourier representation obtained via the
Fourier transform :

X(f) =
∫

x(u) e−i2πfu du = 〈x, ef 〉. (3)

This transform decomposes the signal x onto a set of pure harmonics {ef}f∈IR

which, in contrast with the Dirac functions of the Shannon representation,
are functions with infinite support in time and perfectly localized in the fre-
quency domain (i.e. 〈ef0 , ef 〉 = δ(f − f0)). Then, X(f), a complex-valued
function in general, yields an harmonic description aimed at identifying the
spectral content of the signal x : the squared magnitude |X(f)|2, referred to as
the spectrum of x, quantifies the energetic contribution of each harmonic ef ,
whereas Arg(X(f)), the phase spectrum, gives the relative phase of each one
of these components. Moreover, the inverse Fourier transform, given by :

x(t) =
∫

X(f) e+i2πft df, (4)

defines a one-to-one correspondence between the time representation of a signal
and its frequency representation (equality in (4) is w.r.t the L2 norm). As a
corollary of this unitary mapping, the Parseval formula :

〈x, y〉 =
∫

x(t)y∗(t) dt =
∫

X(f)Y ∗(f) df, (5)

preserves the inner product in the signal space L2(IR).
In the case of the gravitational waves (2), using a stationary phase argu-

ment, it is possible to approximate the Fourier integral in (3) to get [2] :

Xr,k(f) = C f−(r+1) eiΨk(f) U(f), (6)

where Ψk(f) = −2π
(
cfk + t0f + γ

)
, k = −5/3 and r = 1/6. Figure 1–b rep-

resents the corresponding energy spectrum |Xr,k(f)|2 in a bilogarithmic plot.
Although it features the frequency extent of the signal and the power law decay
of the energy spectrum, this plot masks the non-stationarity initially evidenced
by the time waveform of figure 1–a (indeed, this information is contained only
in the phase spectrum of (6)).
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Figure 1: (a) Time representation of the gravitational waveform (2). (b) Fre-
quency spectrum: square magnitude of (6) in a Log-Log plot.

1.2 Instantaneous frequency and group delay

Instantaneous frequency. In order to capture non-stationarities of the fre-
quency content of a real signal x, the instantaneous frequency is defined on its
associated analytic signal2 xa(t) = a(t) eiϕ(t) as follows :

fx(t) =
1
2π

dϕ(t)
dt

. (7)

In particular, for mono-component signals (i.e. signals existing only around one
frequency at each time), this definition allows to characterize the frequency be-
havior of x locally in time ; as a result, the graph of fx vs. time t can be
interpreted as a joint time-frequency signature of x.

Group delay. Conversely, a dual expression of the instantaneous frequency,
aimed at describing the time behaviour locally in frequency exists : it cor-
responds to the group delay. It relies on the phase spectrum of the Fourier
transform X(f) = B(f) eiΨ(f) as follows :

tx(f) = − 1
2π

dΨ(f)
df

. (8)

In general, instantaneous frequency and group delay are not reciprocal func-
tions. Yet, for large time bandwidth product signals, the approximation tx(fx(t)) ∼
t holds, validating to consider indifferently one of the two functions [5].

Following our example of gravitational waves (6), the group delay reads
tx(f) = t0 + ckfk−1, and justifies why (6) is named power law chirp sig-
nal. Now, assuming large time bandwidth product [2], an expression for the
instantaneous frequency is inferred from tx(f) and plotted in figure 3–a. It

2The Fourier transform X(f) of a real signal is related to the Fourier transform Xa(f) of
its associated analytic signal by Xa(f) = 2X(f)U(f).



defines a power law trajectory in the time-frequency plane that features the
non-stationary behaviour of the frequency content of x.

At this point, let us emphasize that one major proviso in exploiting in-
stantaneous frequency (or group delay) is the requirement of mono-component
signals. In practice, not only this condition is rarely satisfied but also observa-
tions are usually corrupted with additive noise, making definitions (7) and (8)
numerically instable.

2 Atomic joint time-frequency representations

Atomic decompositions rely on a linear decomposition of the signal onto a set
of elementary analyzing functions as [5] :

Γx(t, f ; g) = 〈x, gt,f 〉, ∀t ∈ T, ∀f ∈ IR. (9)

The key-point in (9) is that the entire analyzing set {gt,f} is generated by a
unique prototype function g0, which in contrast with the Dirac and harmonic
functions of the Shannon and Fourier representations, are well-localized in time
and frequency simultaneously. To get {gt,f}, g0 is duplicated around each
position (t, f) ∈ (T × IR), by means of a time and frequency displacement
operators pair3, rather than just a shift in time or frequency as it was the case
in (1) and (3) respectively.

Atomic framework allows for a host of different decompositions with specific
characteristics, depending on both the choice of the time-frequency displace-
ment operator, and g0. A particularly interesting property stems from selecting
a normalized analyzing function

∫
|g0(t)|2 dt = 1, which in turn produces a de-

composition Γx(t, f) that preserves the energy Ex of the signal according to :∫ ∫
|Γx(t, f ; g)|2 dt df =

∫
|x(t)|2 dt =

∫
|X(f)|2 df = Ex. (10)

|Γx(t, f ; g)|2 corresponds to an energetic time-frequency representation (TFR),
or time-frequency distribution of x [6, 5].

Atomic decompositions support a very simple implementation, yet they
suffer a severe limitation : since analyzing function g0 has finite equivalent
supports ∆tg0 in time and ∆fg0 in frequency, it precludes to obtain a linear
decomposition with arbitrarily high resolutions, in accordance with the uncer-
tainty principle ∆tg0∆fg0 ≥ 1/4π.
We now review two popular examples.

Short time Fourier transform. The short time Fourier transform (STFT)
combines time shift and frequency shift operators used separately in represen-
tations (1) and (3), in a sole decomposition :

Γx(t, f ; g) =
∫

x(u) g∗0(u− t) e−i2πfu du, (t, f) ∈ (T × IR), (11)

3It is possible to restrict the action of the operators only to a discrete sampling of the
plane (T × IR), yielding to discrete linear decompositions.



where g0 is a low-pass prototype function. This particular displacement op-
erator corresponds to the uniform time-frequency tiling schematized in figure
2–c.

Basically, we can interpret the STFT (11) as a Fourier transform (3) applied
to the windowed signal x(u) g0(u−t). By limiting the time support of x around
each time t, the STFT permits to track non-stationarities on the signal, such
as frequency shifts or transients.
Returning to our example of gravitational waves, we compute (11) using a
Gaussian window g0. The spectrogram (the energy distribution resulting from
squaring the magnitude of the STFT coefficients) concentrates around the in-
stantaneous frequency of the signal (see figure 3–b).
Continuous wavelet transform. Coupling time-shift operator with scale
change operator yields another interesting atomic decomposition. Introduced
as the continuous wavelet transform (CWT) [9] :

Γx(t, f ; g) =
∫

x(u)
(

f

f0

) 1
2

g∗0

(
f

f0
(u− t)

)
du, (t, f) ∈ (T × IR∗+), (12)

this linear decomposition relies on the so-called analyzing mother wavelet g0,
an oscillating function with frequency f0. Formally, for g0 to give rise to a valid
TFR (i.e. one can recover the signal x by inverting Γx(t, f ; g)), it must satisfy
to the following admissibility condition :∫

|G0(ν)|2

|ν|
dν = 1, (13)

where G0(ν) stands for the Fourier transform of g0. Then, whenever (13)
holds, the CWT partitions the time-frequency plane according to the constant
relative bandwidth tiling showed in figure 2–d. In contrast with the STFT, the
CWT offers a joint time and frequency resolution that varies naturally with
the analyzed frequency, matching to physical situations for which a scale based
analysis is more relevant than a spectral representation.
Using a modulated Gaussian wavelet (Morlet wavelet), we compute (12) on
the gravitational wave (2), the resulting energy representation (scalogram) is
presented at (figure 3–c).

3 Energetic bilinear distributions

3.1 Definition

Lack of good time-frequency localization properties of atomic decompositions
have prompted the development of more advanced bilinear distributions. These
distributions can be viewed as a generalization of the squared magnitude of a
linear decomposition :

|Γx(t, f ; g)|2 =
∫ ∫

x(u) x∗(v) gt,f (u) g∗t,f (v) du dv, (14)
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Figure 2: Time frequency patterns corresponding to different signal representa-
tions. X–axis corresponds to time, Y–axis corresponds to frequency. (a) Shan-
non representation. (b) Fourier representation.(c) Short time Fourier transform
.(d) Wavelet transform.

where the specific term (gt,f (u) g∗t,f (v)) is replaced by a more general arbitrary
kernel K(u, v; t, f), to get [6, 5] :

ρx(t, f ;K) =
∫ ∫

x(u) x∗(v) K(u, v; t, f) du dv. (15)

This canonical definition offers a large flexibility in the choice of K and more
interestingly, it is possible to translate each theoretical property of ρx in terms
of an admissibility constraint on K. For instance, for ρx(t, f ;K) to be an
energy distribution satisfying to :∫ ∫

ρx(t, f ;K) dt df =
∫
|x(t)|2 dt =

∫
|X(f)|2 df = Ex, (16)

K needs to obey the following marginal condition :∫ ∫
K(u, v; t, f) dt df = δ(u− v). (17)

Thereafter, we only consider distributions of this type. Another particularly
interesting property to impose on ρx, is the covariance with respect to some
time-frequency displacement operator T ; more precisely, we want the following
diagram to be commutative :

x(t) −→ Tx(t)
↓ ↓

ρx(t, f ;K) −→ ρTx(t, f ;K) = Tρx(t, f ;K).
(18)

In fact, this constraint is used as a starting point to reduce the wide class of
bilinear TFRs (15) to less general, yet extensive, sub-classes. So, following this
approach, we consider successively the two displacement operators defined in
(11) and (12), to generate two important classes of TFRs : the Cohen class and
the affine class.



3.2 The Cohen class of time-frequency distributions

The Cohen class is defined as the set of all bilinear time frequency distributions
that are covariant with respect to time-shift and frequency-shift operations [6] :

x(t) −→ x(t− t0) ei2πf0t

↓ ↓
ρx(t, f ;K) −→ ρx(t− t0, f − f0;K).

(19)

Thus, any distribution (15) satisfying to this principle simplifies to a two di-
mensional convolutive form :

Cx(t, f ; Π) =
∫ ∫

Wx(u, θ) Π(u− t, θ − f) du df, (20)

of the so-called Wigner distribution :

Wx(t, f) =
∫

x
(
t +

τ

2

)
x∗

(
t− τ

2

)
e−i2πfτ dτ, (21)

with an arbitrary 2D parameterizing kernel Π. The Wigner distribution plays
a key-role for this class, and satisfies to several theoretical properties that can
carry on to other members of the class conditionally to proper choices of K
[6, 5]. Among these properties, is the strict localization on linear chirp signals
of the form x(t) = exp{i2π(βt2/2 + f0t)}. For these FM signals we have
Wx(t, f) = δ(f− (f0 +βt)), concentrating perfectly on the linear instantaneous
frequency trajectory.

The Wigner distribution is unitary, which means that it preserves the inner
product from L2(IR) to L2(IR2) according to the Moyal formula :∣∣∣∣∫ x(t) y∗(t) dt

∣∣∣∣2 =
∫ ∫

Wx(t, f) Wy(t, f) dt df. (22)

Whereas the mapping x 7→ Cx is not an isometry in general, Eq. (22) holds for
Cx if and only if the associated kernel Π verifies the condition : |Φ(τ, ξ)| = 1,
where Φ is the Fourier transform of Π. This fundamental property, along with
the covariance principle (19) provides us with a time-frequency counterpart of
any convolution-based signal processing. In this direction, it becomes trivial
to demonstrate that the spectrogram, defined as the squared magnitude of a
STFT, is a particular member of the Cohen class and corresponds to the 2D
low-pass kernel Π(t, f) = Wg0(t, f) in (20).

Figure 3–d illustrates the Wigner distribution computed on the gravita-
tional wave signal of (2). Although it overtakes the spectrogram in terms of
localization on the power law group delay itself, the Wigner distribution devel-
ops noxious oscillating components, referred to as interference terms, inherited
from the bilinearity of its definition (21) [5]. For its part, the spectrogram, as
a smoothed version of the Wigner distribution, removes all zero-mean interfer-
ence terms while spreading out the auto-components.



3.3 The affine class of time-frequency distributions

Selecting time shifts and scale changes rather than time and frequency shifts,
yields mutatis mutandis the affine class of TFRs that satisfy to the new covari-
ance diagram :

x(t) −→ |a|−1/2 x
(

t−t0
a

)
↓ ↓

ρx(t, f ;K) −→ ρx

(
t−t0

a , af ; K
)
.

(23)

In [4], it is proved that for all affine Wigner distributions P (k) of this class,
there exist a real k and a continuous non-vanishing parameterizing function µk

such that4 :

P
(k)
X (t, f) = f2(r+1)−q

∫
µk(u) X(fλk(u))X∗(fλk(−u)) ei2πtfζk(u) du, (24)

with λk(u) =
(
k(e−u − 1)/(e−ku − 1)

)1/(k−1)
, ∀k 6= 0, 1; λ0(u) = u/(1− e−u);

λ1(u) = exp (1 + (u e−u)/(e−u − 1)); ζk(u) = λk(u) − λk(−u), and r, q two
real-valued constants. As we saw, Wigner distribution is naturally adapted to
linear chirp signals ; similar localization properties generalize to affine Wigner
distributions when applied to power law chirp signals of the form {Xr,k(t) =
C f−(r+1) eiΨk(f) U(f) : txk

(f) = t0 + ck fk−1, k ∈ IR∗−}. In that case, the
distribution P (k), with same k as in Xr,k, behaves as :

P
(k)
Xr,k

(t, f) = C2f−(q+1) δ(t− txk
(f)) ⇔ µL

k (u) =
dζk(u)

du
(λk(u) λk(−u))r+1.

(25)
One can either establish this result by a straightforward calculus as in [4], or
use geometric arguments to show that power law trajectories are the eigen-
structures (i.e. globally invariant) of the pointwise construction rules that
underlie affine Wigner distributions [8].

Looking back to our example, we know that, in first approximation, a grav-
itational wave model produced by the coalescence of a massive binary system
exhibits a k = −5/3 power law group delay. Accordingly, the affine Wigner dis-
tribution P (−5/3), along with the specific choice (25) for µk perfectly localizes
on the time frequency path tx(f) = t0 + cf−5/3 (see figure 3–e).5

As far as unitarity is concerned, a Moyal formula similar to (22) holds for
any affine Wigner distribution (24) associated to the following parameterizing
function [4] :

µU
k (u) =

(
dζk(u)

du

) 1
2

(λk(u) λk(−u))r+1
. (26)

Surprisingly, only for k = 0 we have µU
0 (u) = µL

0 , leading to the unique distri-
bution P (0) that satisfies to localization on hyperbolic paths and to unitarity

4An equivalent canonical definition of this class is proposed in [7], relying on an affine
convolution of the Wigner definition.

5We used a pseudo affine Wigner distribution algorithm proposed in [10] to estimate P
(k)
X .



simultaneously. Nevertheless, although a localized (active) distribution P (k) is
not unitary in general, it cooperates with its passive form [4, 2] :

P̃
(k)
X (t, f) =

∫
Ψk(f(t−τ))P

(k)
X (τ, f) dτ with Ψk(s) =

∫
ei2πsζk(u) du, (27)

to produce an isometry-like relation of the form :∣∣∣∣∫ +∞

0

X(f) Y ∗(f) f2r+1 df

∣∣∣∣2 =
∫ ∫ +∞

0

P̃
(k)
X (t, f) P

(k)
Y (t, f) f2q df dt. (28)

Starting from this relation, and applying the affine covariance of diagram
(23) to the CWT (12), it is straightforward to rewrite the scalogram (squared
magnitude of the CWT) as :

|Γx(t, f ; g)|2 =
∫ ∫ +∞

0

P̃
(k)
X (u, θ) P

(k)
G0

(
f

f0
(u− t), θ

f0

f

)
θ2q dθ du. (29)

The scalogram is a particular member of the affine class of TFR and it can
be interpreted as a frequency-dependent smoothed version of an affine Wigner
distribution with kernel P

(k)
G0

. Conversely, quadratic affine Wigner distribu-
tions are high resolution alternatives to the wavelet transform. They have
many desirable theoretical properties but, unfortunately, also two primary
drawbacks. First, their bilinearity results in copious interference terms in the
time-frequency plane (except for the eigen-structures Xk,r). Second, as the
entire signal enters their definition, efficient implementations suitable for long
time series have not been developed for most of these TFRs [10]. As a result,
few affine Wigner distributions have been employed in real-world applications.

4 Reassignment methods

Concurrently to the previous approach, Kodera et al. [12] proposed another
method to obtain well-localized TFRs. Their approach, referred to as reassign-
ment, is based on a post-processing of the spectrogram. It consists in moving
the values of the spectrogram from their initial computation point to a time-
frequency location (t̂(t, f), f̂(t, f)) given by a local center of mass computed
over the Wigner-Ville distribution of the signal. This results in a squeezing
of each signal components along their associated group delay and/or instan-
taneous frequency path. This is illustrated in figure 3–f with the reassigned
spectrogram of a gravitational wave. Moreover, reassignment has been proved
[1] to rely on a more general concept and therefore can be extended to all
distributions of Cohen and affine classes.

From a computational viewpoint, the reassigned spectrogram supports ef-
ficient algorithms based on a companion expression for the reassignment point
coordinates [1] :

t̂(t, f) = t + Re {Γx(t, f ; t.g)/Γx(t, f ; g)}
f̂(t, f) = f − Im {Γx(t, f ; dg/dt)/Γx(t, f ; g)} .

(30)
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Figure 3: Time-frequency energy distributions computed on the gravitational
wave defined in (2). X-axis corresponds to time and Y-axis to frequency. (a)
Theoretical law as given by the instantaneous frequency (7). (b) Spectrogram,
the squared magnitude of the STFT (11). (c) Scalogram, the squared magni-
tude of the CWT (12). (d) Wigner-Ville distribution (21). (e) Affine Wigner
distribution (24) with k = −5/3. (f) Reassigned spectrogram (see Sect. 4)

Therefore, the resulting algorithm combines in a proper way, three STFTs of
the signal based on three distinct windows.

5 Beyond analysis

TFRs, not only perform remarkably well when applied to non-stationary sig-
nals, but also allow to advantageously reformulate some standard signal pro-
cessing operations such as detection, estimation or identification. Although no
performance gain is to be expected from this approach, peculiar properties of
TFRs can serve as to simplify their implementation in a dramatic way. It is
for instance the case for detection, where the problem at hand is to identify
a signal xθ, completely determined save for some unknown parameter θ (e.g.
arrival time), in a noise-corrupted observation y. It is then well-known that
the squared output of the matched filter (expressed in the frequency domain) :

Λ(y; θ) = |〈Y, Xθ〉|2 , (31)

defines the generalized likelihood ratio test (GLRT) [2], which is maximum over
θ, when the prototype signal Xθ coincides with the observation Y . Using the



Moyal-type formula (28) for localized affine Wigner distributions, Eq. (31) is
then equivalent to :

Λ(y; θ) = 〈〈P̃ (k)
Y , P

(k)
Xθ
〉〉. (32)

If, in addition, Xθ corresponds to the eigen-structure Xk,r on which P (k) per-
fectly concentrates, the GLRT of Eq. (31) simply reduces to the time-frequency
path integration :

Λ(y; θ) =
∫ ∫

IR+

P̃
(k)
Y (t, f) δ(t− txθ

(f))f2q df dt. (33)

This example emphasizes the role of localized TFRs in the context of grav-
itational waves detection [3].

6 Conclusion

Bilinear TFRs offer a wide panel of tools aimed at analyzing non-stationary
signals and simplifying some signal processing operations. The squared mag-
nitude of a linear decompositions is a elementary distribution that has been
successfully used in the past.

Unfortunately, despite of their attractive properties, only a few more ad-
vanced bilinear distributions have been applied to real-world data. Using a
gravitational wave signal as a paradigm, we have sketched how to take advan-
tage of the unitarity and localization properties of these distributions to achieve
a more flexible implementation of the matched filtered detection procedure.
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