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ABSTRACT

A worldwide collaboration attempts to confirm the existence of gravitational waves predicted by Einstein’s theory
of General Relativity, through direct observation with a network of large-scale laser interferometric antennas.
This paper is a contribution to the methodologies used to scrutinize the data in order to reveal the tiny signature
of a gravitational wave from rare cataclysmic events of astrophysical origin. More specifically, we are interested
in the detection of short frequency modulated transients or gravitational wave chirps. The amount of information
about the frequency vs. time evolution is limited: we only know that it is smooth. The detection problem is
thus non-parametric. We introduce a finite family of “template waveforms” which accurately samples the set of
admissible chirps. The templates are constructed as a puzzle, by assembling elementary bricks (the chirplets)
taken a dictionary. The detection amounts to testing the correlation between the data and the template family.
With an adequate time-frequency mapping, we establish a connection between this correlation measurement and
combinatorial optimization problems of graph theory, from which we obtain efficient algorithms to perform the
calculation. We present two variants. A first one addresses the case of amplitude modulated chirps and the
second allows the joint analysis of the data from several antennas. Those methods are not limited to the specific
context for which they have been developed. We pay a particular attention to the aspects that can be source of
inspiration for other applications.
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1. CONTEXT AND MOTIVATION

1.1 Gravitational wave astronomy: the dawn of a new era of astrophysics

The Theory of General Relativity predicts the existence of wave solutions to the equations which govern the
dynamics of space-time. These solutions are referred to as gravitational waves1 (GW) and can be regarded
as propagating deformations of space-time. An international collaboration currently attempts to confirm this
prediction by the direct observation with a network of GW antennas (see Fig. 1).

Although these antennas have different sensitivities due to different scales and technologies, they all follow the
same measurement principle. Since GW acts locally as a strain i.e., it causes a fractional change of the distance
between two points with constant coordinate separation∗, the idea is to use high precision laser metrology to
measure this effect. GW antennas are Michelson-Morley interferometers.2 In a nutshell, coherent twin laser
beams are propagated back and forth along two perpendicular directions i.e., the two arms (of length L) of the
interferometer. The two beams eventually combine and interfere. From the measurement of the resulting light
intensity, we obtain the difference δL of their optical path lengths and thus the fractional length change δL/L
due to an impinging GW.

The observation of GW requires an antenna and also a generator. GW are produced by accelerated masses,
the same way electromagnetic waves are produced by accelerated charges. However, space-time is very hard to
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∗Those two points can be physically enacted by freely falling particles.



deform like a stiff membrane. Very large masses and relativistic velocities are required to generate observable GW.
Only astrophysical systems possess those characteristics and even for these systems, the GW strain amplitude
is expected to be tiny, of the order of δL/L ∼ 10−21.

GW antennas are designed to reach this target sensitivity. First, they have long arms to relax as much
as possible the requirement on the precision for the measurement of the differential length δL. With L in
the realistic kilometric scale, the specification becomes δL ∼ 10−18m. As a comparison, this is of the order
of one-thousandth the “diameter” of the proton. To achieve this unprecedent accuracy, GW antennas use a
more sophisticated measurement scheme than the one explained above and they include innovative technologies
developed specifically. To highlight few of those, the instrument is entirely isolated from the ground by advanced
seismic attenuators. The whole instrument operates under ultra high vacuum. For this reason, it is embedded
in a very large vacuum chamber (these chambers are among the world’s largest). GW antennas are equipped
with high quality optics among the best mirrors in terms of losses and reflectivity. This allows an observation
window in the bandwidth ranging from few 10 to few 103 Hz (see Fig. 2).

Several source candidates have been identified in this frequency window (see Ref. 3 for a complete overview).
Two types can be distinguished: long-term/weak amplitude (which includes periodic waves produced by rapidly
spinning neutron stars, or the stochastic background created in the early Universe) and short-term/large am-
plitude (associated to cataclysmic phenomena, such as supernova explosions or the coalescences of neutron star
or black hole binaries). Here, we are interested in the second category, which consists in GW transients lasting
typically few hundreds of milliseconds to few seconds. The next section details and motivates the specific model
of GW transients we consider.

The farther the source, the weaker the GW signal. The sensitivity of the GW antennas limits their observa-
tional field to a finite horizon (with typical distance of few tenths of Mpc). Within this volume of Universe, the
projections of the source populations predict small numbers of individuals. Consequently, the search consists in
detecting rare transients (with a typical rate of occurrence of a few per year) in the time series acquired during
long period of observation (lasting typically a year).

The scope of GW observation goes beyond the only verification of their existence. Observing GW give access
to information about the physics of their sources that are difficult to access otherwise (with an optical telescope
for instance). The first detection will inaugurate the new era of gravitational wave astronomy.

1.2 GW chirps as generic signatures of orbiting or spinning sources

The dynamics of the source drives the GW emission. When the source is a slowly moving† orbiting or spinning
system in a plane (making an angle ǫ with the line of sight, see Fig. 3), the rotational motion inducts a quasi-
periodic and frequency modulated GW emission. A GW is characterized by two independent polarizations h+
and h× which we write using the following compact form, viz.

h(t) ≡ h+(t) + ih×(t) =
1 + cos2 ǫ

2
A(t) cosϕ(t) + i cos ǫ A(t) sinϕ(t), (1)

where the amplitude A(t) > 0 and phase ϕ(t) are related to the orbital or spinning phase. We refer to this signal
as GW chirps. Note that, the two polarizations are coupled in this model and this results from the assumptions
describing the source.

Several sources of GW chirps are well-known. One example is the coalescence of compact object (neutron stars
or black holes) binaries. The models of the coalescence predict the time evolutions of chirp phase and amplitude
(power laws in a first approximation) with great accuracy. Currently, the efforts are mainly concentrated on the
detection of GW chirps with these specific phase and amplitude.

Our objective is different. The model in Eq. (1) is a robust prediction and remains valid whenever the motion
is rotational/orbital independent of the physical phenomena which determines it. In other words, GW chirps
are generic signatures of orbiting/spinning systems. This is the basic motivation for searching for wider ranges
of GW chirps.

†The velocities are small with respect to the speed of light.



In physically realistic situations, the phase evolution is however not totally arbitrary: the phase ϕ(t), the
frequency f(t) ≡ (2π)−1dϕ/dt and its derivatives are expected to be continuous. Also, the variations of the
frequency are directly related to the amount of available energy. The energy being finite, those variations are
bounded. In this work, we only consider the bounds on the modulation rates |df/dt| and |d2f/dt2|. Similarly, we
expect the amplitude A(t) to be a smooth function with a limited variation rate. These arguments set constraints
on the regularity of the amplitude and phase evolutions.

Besides those regularity constraints, we do not have other information about the GW chirp. As opposed
to the detection of coalescing binary chirps, we do not have an analytical expression describing the phase and
amplitude at our disposal. The detection of generic GW chirp is thus a non-parametric problem. Several methods
have been proposed to address this problem which include the signal track search4 (STS) , the best chirplet path
search5 and the best chirplet chain (BCC) search6 proposed by the authors. In this article, we present the basic
ideas of the BCC method. In the next section, we start with the simple case where the phase only is unknown
(the amplitude is assumed to be constant). In Sec. 3, we discuss extensions and variants7, 8 of this first case.

2. NON-PARAMETRIC DETECTION OF GW CHIRPS

2.1 Basic ideas

The GW antenna receives a linear combination of the two polarizations. Concretely, we have δL/L = F+h+ +
F×h× where the antenna pattern function F+ and F× depends on the relative orientation of the incident GW
and the detector plane.

Therefore, let s(t) ≡ F+h+(t) + F×h×(t) be the signature left in the detector output by an incoming GW
chirp. Our objective is to detect this signature in the (additive) instrumental noise.

Figure 2 displays the noise spectrum of the main GW antenna. The noise spectrum is not flat but follows
a curve whose global shape is common to all detectors (steep increase at the lower and higher ends of the
observation window). We assume that the raw detector output is pre-conditioned by a whitening filter. We
denote the resulting time-series x(t) and consider that s(t) designates the “whitened” version of the actual GW
signal.

For GW chirp as defined in Eq. (1), the signature can be conveniently written as s(t) ≡ ℜ{F̄ ∗A(t) exp iϕ(t)}
where F̄ = (1 + cos2 ǫ)/2 F+ + i cos ǫ F× is the complex antenna pattern. Here, z∗ designates the complex
conjugate of z. This expression evidences that the signature s(t) is a scaled and phase shifted version of the
complex signal A(t) exp iϕ(t) which depends only on the “dynamical” part of the GW.

If the chirp phase and amplitude were known in advance, the detection would optimally be performed with
the likelihood ratio. Under Gaussian assumption for the noise, this likelihood ratio essentially reduces to the
quadrature matched filtering statistic,9

ℓp(x) =
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where we work with blocks of N data samples taken at discrete times tk = k/fs with a sampling frequency fs ∼
few kHz to cover the detector band. The duration T = N/fs corresponds to the lifetime of a GW chirp in the
detector band, i.e., typically T ∼ few 10−1 to 1 sec, so that N ∼ few 103 to 104.

The above statistic amounts to correlating the data with the reference waveform sp(t) which is a copy of
s(t) normalized to unit norm. More precisely, we have sp(t) = a(t) exp iϕ(t) where the amplitude a(t) ∝ A(t)

is rescaled to unit norm i.e.,
∑N−1

k=0 a(tk)
2 = 1. The subscript p ≡ {A(·), ϕ(·)} stresses the dependency on the

amplitude and phase functions taken here as parameters. The result of the correlation is then compared to a
threshold to decide whether the chirp is present or not in the data.

In reality, the chirp phase and amplitude are not known. Inspired by the principles of the generalized likelihood
ratio test9 (GLRT), we apply the statistic to all possible waveforms and check if at least one shows a significant
correlation with the data. The statistic is thus

L(x) = max
p∈P

ℓp(x), (3)



where P denotes the set of all admissible phases and amplitudes i.e., which satisfy the regularity conditions
defined in Sec. 1.2.

The above maximization problem is non-linear and non-convex and it is performed over a continuous set of
waveforms. This makes the problem difficult to solve in this form. These difficulties can however be circumvented
by discretizing P with a finite family P̃ of template waveforms. The maximization over the continuous set P is
replaced by the search over P̃ which can be performed numerically.

The templates are constructed as a “puzzle”, by assembling elementary bricks taken from a dictionary. The
building blocks are small pieces of chirp signal, or chirplets which we assemble in connected chains of chirplets.
In Sec. 2.2, we define those objects in more details. This construction scheme allows to generate a large variety
of chirps although the number of building blocks is limited. The dictionary and the assembling rules are chosen
such that any element of the admissible chirp set P can be closely approximated.

In Ref. 5, the authors rather speak of chirplet graph which turns out to be a better terminology since it makes
a connection with graph theory and related combinatorial optimization problems. Indeed, the representation of
the template as a chain or a graph allows the decomposition of the whole and difficult maximization problem
in Eq. (3) into an interweaving of smaller and simpler problems. This gives rise to an efficient scheme which
yields the global maximum recursively from the sequence of the smaller problem solutions. We detail this point
in Sec. 2.3.

2.2 Chains of chirplets: templates for GW chirps

We now elaborate on the ideas given in the previous section restricting to the case where only the phase ϕ(t)
is unknown and the amplitude A(t) = A is assumed to be constant. We thus have p = {ϕ(·)} and sp(t) =
N−1/2 exp iϕ(t) (i.e., a(t) = Cst = N−1/2 due to the unit norm rescaling).

The construction of the chirplet dictionary is easily represented in the time-frequency (TF) plane as displayed
in Figure 4. We define a TF grid by dividing the time and frequency axes into Nt and Nf intervals respectively.
We call chirplet a TF segment joining two successive grid vertices at whose frequency doesn’t vary more than
±N ′

r frequency bins over a time bin. We form a chirplet chain (CC) and impose its continuity. We also impose
that the slopes of two successive chirplets in the chain do not vary more than ±N ′′

r frequency bins. The values
of the regularity parameters N ′

r and N ′′
r are fixed by the bounds on the frequency modulation rates.

In a sense, the family P̃ of all CC “samples” the set P of all admissible chirps. An evaluation of the accuracy
of this sampling can be obtained. We define the “distance” between an arbitrary chirp of phase p = {ϕ(·)} and
the CC of phase p̃ = {ϕ̃(t)} by δ(p, p̃) ≡ ℓp(sp)−ℓp̃(sp). We get the distance between P and P̃ from the following
worst case estimate6

sup
p∈P

inf
p̃∈P̃

( |δ(p, p̃)|
ℓp(sp)

)1/2

∼ O
(

1

N2
t

+
1

Nf

)

. (4)

Therefore, for Nt and Nf large enough, we can safely replace P by P̃ in Eq. (3) which allows to perform the
maximization numerically. In the next section, we examine which search algorithm can be used.

Note that we choose a regular TF grid for simplicity. There are however theoretical motivations for changing
to a multi-scale dictionary as developed in Ref. 5. We won’t investigate this possibility here.

2.3 Searching through the chirplet chain family

We want to maximize ℓp̃(x) over the finite family P̃ . The cardinal of P̃ grows rapidly (exponentially) with
Nt (and thus with N). For realistic signal duration, it becomes so large that the use of an exhaustive search
through P̃ to find the maximum is computationally prohibitive. However, the structure of chirplet chains offers
the possibility to use efficient alternatives to the exhaustive search borrowed from combinatorial optimization.

Combinatorial optimization problems are much simpler to solve when the objective function is additive i.e.,
when it can be written as the sum of contributions depending on one variable only. In the case of interest here,
the overall square modulus in the expression of ℓp̃ (see Eq. (2)) prevents from expressing this function as a sum
of terms involving one chirplet only. Therefore, the objective function is not additive strictly speaking, but as
we will show now, it is close to an additive function.



We first reformulate ℓp̃ in the TF plane using the discrete Wigner-Ville (WV) distribution. The WV distri-
bution is defined as10

wx(tn, fm) ≡
+kn
∑

k=−kn

x(ts⌊n+ k/2⌋)x∗(ts⌊n− k/2⌋) e−2πimk/(2N), (5)

where kn ≡ min{2n, 2N − 1 − 2n} and ⌊·⌋ defines the integer part. The arguments of WV are the discretized
time tn = n/fs and frequency fm = fsm/(2N) with n = 0, . . . , N − 1 and m = 0, . . . , 2N − 1.

The WV distribution combines two key properties which allow to reformulate the quadratic matched filter
as time-frequency path integral.11 First, it is unitary10 which means that the scalar product of two time-series
can be rewritten in terms of the scalar product of their TF distributions via the Moyal formula. Applying this
property to Eq. (2), we can re-express the statistic as the correlation of the WV of the data with the template
WV, viz.

ℓp̃(x) =
1

2N

N−1
∑

n=0

2N−1
∑

m=0

wx(tn, fm)wsp̃ (tn, fm). (6)

Second, the WV distribution is geometrically simple for chirps: it is almost Dirac along this TF curve, viz.

wsp̃(tn, fm) ≈ 2δ(fm − f̃(tn)), (7)

where f̃(t) = (2π)−1dϕ̃/dt is the instantaneous frequency of the CC. This approximation can be written as the
sum of contributions due to individual chirplets, namely

wsp̃(tn, fm) ≈ 2

Nt−1
∑

j=0

δ(fm − f̃j(tn))ΠT̃j
(tn), (8)

where f̃j(t) is the frequency of the jth chirplet and T̃j = {t = n/fs for jb ≤ n < (j + 1)b} denotes its time

support. Here, b ≡ |T̃j | = N/Nt is the number of samples per chirplet. The function Π designates the boxcar
function i.e., ΠT (t) = 1 when t ∈ T and ΠT (t) = 0 otherwise.

Clearly, the approximation amounts to neglecting the so-called interferences .10 The interferences are cross-
terms in the WV which results from the quadratic interaction between the components of the signal. In the
present case, the components coincide with the chirplets. Combining Eqs. (6) and (7), we obtain an approxima-

tion of the statistic ℓ̂p̃(x)

ℓp̃(x) ≈ ℓ̂p̃(x) ≡
1

N

N−1
∑

n=0

wx(tn, f̃(tn)) =
1

N

Nt−1
∑

j=0

∑

tn∈T̃j

wx(tn, f̃j(tn)), (9)

which reduces to the path integral of the data WV along the CC frequency.

The approximated statistic is an additive function. In other words, we eliminated the non-additive part of
ℓp(x) i.e., the cross contributions between chirplets. Since ℓ̂p̃ is additive, its maximization falls into the category
of problems akin to the shortest path problem12‡ that dynamic programming resolves in polynomial time. We
refer to this TF pattern algorithm as BCC search.

Figure 5 illustrates the efficiency and robustness of the method. We apply the method to search a “random”
chirp (i.e., a chirp randomly chosen in P). We see that the frequency estimation fits quite nicely the injected
signal. The interested reader may find in Ref. 6 a thorough evaluation of the performances of the algorithm.

3. VARIANTS AND EXTENSIONS

In this section, we discuss two extensions of the BCC search presented previously.

‡Note that we are rather searching here for the “longest” path and that the length is measured as a Lebesgue type
integral over wx.



3.1 Detecting GW chirps with a varying envelope

In Sec. 2.1, we proposed a method for the detection of GW chirps of constant amplitude. The method relies on
two ingredients namely, (i) the discretization of the GW chirp set by a family of template waveforms obtained by
chaining chirplets taken from a dictionary and (ii) an efficient time-frequency algorithm to search the template
family. These two ingredients can be also obtained when the chirp amplitude is not constant (i.e., the GW chirp
is modulated in amplitude), provided few adaptations.

The dictionary used when the GW chirp has a constant amplitude, contains chirplets of equal amplitude.
In the next section, we change the dictionary by introducing the possibility to have chirplets with different
amplitudes.

3.1.1 Chirplet chains with amplitude modulation

We now consider a dictionary of chirplets with constant but different amplitudes as illustrated in Fig. 4. Chains
of chirplets taken in this dictionary have a piece-wise constant amplitude. We discretize the range of the chirplet
amplitudes by a dyadic scale of Na bins, namely the chirplet amplitudes are taken in {ãl for l = 0, 1, . . . , Na−1}
with ãl = 2−l/2/

√
b for l < Na− 1 and ãNa−1 = 0. We control the regularity of the amplitude chain by imposing

that the amplitude index l of two successive chirplets in a chain does not differ by more than the regularity
parameter ±N ′

s.

The reference waveform sp(t) = a(t) exp iϕ(t) in Eq. (2) is normalized to unit norm i.e.,
∑N−1

k=0 a2(tk) = 1.
The chirplet chain sp̃(t) = ã(t) exp iϕ̃(t) has to satisfy this normalization as well. This implies the following
normalization constraint for the sequence of the chirplet amplitudes. Let lj be the amplitude index of the jth

chirplet, we must have

b

Nt−1
∑

j=0

ã2lj =

Nt−1
∑

j=0
lj 6=Na−1

2−lj = 1. (10)

We see here that the choice of the dyadic scale for the amplitudes ensures that, even if the number of possible
amplitudes is limited, there is a large diversity of sequences which satisfy the above normalization constraint.

The duration or time support (i.e., number of the non-vanishing samples) of the chain and the peak of the
amplitude sequence are linked by the normalization constraint. For instance, if a chain has one chirplet with
l = 0 (i.e, ã = 1/

√
b), the amplitudes of all the other chirplets must be zero (i.e., ã = 0 and l = Na − 1).

The longest time support is determined by the value of the smallest amplitude. In other words, the choice of
Na fixes the largest number of non-vanishing chirplets that a chain can have. When Na = log2(Nt) + 2, this
number is maximum and equal to Nt such that the chains can last the whole time interval T with an amplitude
ãNa−2 = N−1/2.

3.1.2 Joint search over amplitude and frequency

Similarly to Sec. 2.3, the template family generated from the above dictionary is too large to be searched
through exhaustively and thus requires the use of alternative algorithms. Here, we change the TF path search
proposed earlier to fit the case where the chirplet amplitude evolves. In particular, this algorithm relies on the
approximation of the template WV wsp̃(t, f) given in Eq. (7) which has to be adapted to present case.

The compatibility of the WV with the multiplication allows us to write the template WV in terms of the
WV of the amplitude and phase separately, viz.

wsp̃(tn, fm) =
1

2N

2N−1
∑

m′=0

wã(tn, fm′)wẽ(tn, fm − fm′), (11)

where ẽ(t) ≡ exp iϕ̃(t). Eq. (7) provides a model for wẽ(t, f). We approximate wã(t, f) as follows

wã(tn, fm) ≈ 2N ã(tn)ΠF(tn)(fm), (12)

where F(tn) designates a frequency bandwidth which needs to be determined.



The idea here is to mimic the characteristic features of the WV of a low-pass function: the main contributions
are concentrated about the axis f = 0 and the width F along the frequency axis is inversely proportional to the
time support (due to the Heisenberg inequality). Owing to Eq. (10), large amplitude implies short time support
and thus large frequency bandwidth. This argument suggests to choose F(tn) = {f such that |f | ≤ 2Nã(tn)/fs}.

Combining Eqs. (11) and (12), and splitting the result in a sum of contributions from each chirplet, we get

wsp̃(tn, fm) ≈ 2N

Nt−1
∑

j=0

ãljΠF̃j
(fm − f̃j(tn))ΠT̃j

(tn), (13)

where F̃j = {f such that |f | ≤ 2Nãlj/fs} is the frequency width of the template WV associated to the jth

chirplet.

Replacing this expression in Eq. (6), we obtain the following approximation of the statistic

ℓ̂p̃(x) =

Nt−1
∑

j=0

∑

tn∈T̃j

∑

fm−f̃j(tn)∈F̃j

ãljwx(tn, fm), (14)

which has to be maximized jointly over the amplitude and phase/frequency. This maximization problem is
similar to the one we end up with in Sec. 2.3. The difference is that we integrate along a two-dimensional
time-frequency stripe of adjustable width and height instead of a one-dimensional path of fixed height.

Again, the objective function is additive but a major difference is that the maximization is subject to the
normalization constraint in Eq. (10). This leads to the class of constrained optimization problems akin to the
change making problem and other variations of the knapsack problem.12 Again, a procedure based on dynamic
programming solves this problem in polynomial time. Note that, due to the larger complexity of the problem,
the algorithm is significantly more demanding in terms of number of numerical operations and memory space
than the one proposed for the case where the amplitude is constant.

We present in Fig. 6 an illustration of the method with a “random” chirp. We see that, while the time
support is somewhat underestimated, the central part of the chirp is well identified.

3.2 Detecting GW chirps using multiple antennas

The operational schedule of the global network of GW antenna is arranged in such a way that always, at least two
antennas take data. Several improvements can be gained from this joint observation. First, the signal-to-noise is
improved by combining the information received by each antenna. This results in an increase of the sight horizon
and thus of the number of observable sources. Second, the wide aperture of GW antenna prevents the accurate
identification of the sky position of the source. The observation with multiple antennas allows (when they are
sufficiently distant) to locate the source with a much better accuracy. This provides an precious information for
an eventual follow-up with other instruments like an optical telescope.

An impinging GW chirp produces the same signature (up to a scaling and phase factor) in the output of each
antenna. Let sd(t) = ℜ{F̄ d∗A(t− τd) exp iϕ(t− τd)} be the signature received by the dth antenna of the network
counting Nd detectors. The antenna pattern F̄ d depends on the alignment of the antenna and the source. The
angles which define their relative orientation (see Fig. 3) are the spherical coordinates of the source (i.e., the
co-latitude θ and longitude φ) and the polarization and inclination angles ψ and ǫ. (Note that these angles are a
priori unknown parameters that have to be estimated from the data). In the above expression of the signature,
the time t is measured by the clock of a (arbitrary) fiducial observer. The time delay τd measures the difference
in the time of arrival at the antenna d with respect to the fide. It depends on the direction of arrival of the wave
and hence on θ and φ.

The ideas and techniques of sensor array processing (for a recent review, see Ref. 13) apply in the present
context. We consider the network of antennas as a sensor array which produces a multidimensional output
x(t) = [x1(t+ τ1) . . . xNd(t+ τNd)]T . This output is constructed as a column vector which stacks the data from
each detectors. A time-shift is applied to compensate the time delays assuming a certain source sky location.



With this formalism, the signature received by the network is s(t) = ℜ{F̄A(t) exp iϕ(t)} where F̄ ≡ [F̄ 1 . . . F̄Nd ]T .
The GW signature thus belongs to the 2-dimensional vector space defined by F̄ and F̄∗ which we refer to as GW
polarization plane.

If we consider the simplified case where the instrumental noise is Gaussian and white, the likelihood ratio
associated to the detection of the GW signature can be written as the combined quadrature matched filtering of
two synthetic streams yl(t) (with l = 1 and 2) which linearly combines the data from all the detectors,7 viz.

ℓp(x) =
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The synthetic streams are projections of the data onto the GW polarization plane, namely yl(t) = uT∗
l x(t)

where the vectors u1 and u2 form an orthonormal basis of this plane.

Synthetic streams are akin to beam-former solutions.13 The vectors ul acts as “spatial” filters which adjust
the phase of the output of each antenna such that the signatures they carry add up constructively.

To maximize ℓp(x) over the admissible chirp set P , we use the template families P̃ defined in Sec. 2.2 or
Sec. 3.1 depending on the assumption made on the chirp amplitude (constant or not).

By applying the Moyal formula to both terms of Eq. (15), we can write the statistic as the correlation of the
combined WV w1,2(t, f) ≡ wy1

(t, f) + wy2
(t, f) of the synthetic streams with the template WV, viz.

ℓp̃(x) =
1

2N

N−1
∑

n=0

2N−1
∑

m=0

w1,2(tn, fm)wsp̃(tn, fm). (16)

This reformulation of the statistic turns out to be identical to in Eq. (9) or Eq. (14) if we replace wx(t, f) by
w1,2(t, f). Therefore, the maximization of the time-frequency statistic goes along the same scheme exposed in
the case of a single antenna.

When the source position θ and φ is not known in advance, we perform a full sky search by repeating the
computation of maxp̃∈P̃ ℓp̃ for all sky patches of a celestial grid. If the maximum of the resulting “likelihood
landscape” exceeds the detection threshold, we conclude that a GW chirp is present and the center of the
corresponding sky patch yields the estimate of the source location.

Figure 7 present a proof of principle for the joint estimation of the source position and signal frequency. Here,
the chirp amplitude is assumed to be constant.

We considered the simplified situation where the noise spectrum is flat. The realistic case where the noise
spectrum is not flat different for each detector requires further approximations to obtain an additive statistic.8

With those, the detection procedure globally holds.

4. CONCLUDING REMARKS

In this paper, we developed a methodology for the non-parametric detection of GW chirps. One of the main
ingredients of the proposed method is the use of a finite family of template waveforms which “samples” the large
and continuous set of admissible chirp signals. We construct the templates by chaining elementary bricks taken
from a dictionary. The dictionary (chirplets) and the chaining rules (regularity constraints) are carefully chosen
in order to capture the fundamental characteristics of the signal.

Following Ref. 5, we may say that we build a signal model from a graph: the template is associated to a path
in the (chirplet) graph which describes the contents and structure of the admissible signal set. This approach
does not apply to chirps only but it can be generalized whenever the signal (or the image) is composite in nature.
For instance, we may consider paths (or subgraphs) in wavelet (or any other ⋆-lets) graphs (see Ref. 14 for an
example with Markov trees of wavelet coefficients). We may trace the idea back to the Viterbi algorithm15 used
initially for error-correction scheme in digital communication. (In this case, the signal information is encoded a
probabilistic Markov tree.)



The detection thus amounts to finding the best template/path with respect to a goodness of fit criterion.
Dynamic programming is a well-known procedure to search for optimal path in a graph. However, it requires
that the criterion to optimize be additive. Although this is not the case here, the good properties of the
WV distribution allows us to extract the “additive part” of the exact criterion. The combining of dynamic
programming and the WV distribution turns out to be a powerful time-frequency pattern search algorithm.
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Figure 1. The global network of laser interferometric GW antenna. We show here the localisation and
orientation of the antennas, along with an aerial view. The global network is currently composed of three an-
tennas in the US (LIGO, http://www.ligo.org) [the northern one is a double antenna], two in Europe (GEO,
http://www.geo600.uni-hannover.de [in green on the world map] and Virgo, http://www.virgo.infn.it [in red]) and
one in Japan (TAMA, http://tamago.mtk.nao.ac.jp). GW antennas are Michelson interferometers whose arms (few
hundred meters to kilometer scale) clearly form a L shape from above. In a nutshell, the measurement principle is the
following. A laser beam (with a precise and stable wavelength) is divided into two twins, each of which being shown on
one arm. The two beams are reflected by mirrors placed at the far end of the arms and then combines and interferes at
the initial splitting point. The precise measurement of the resulting light intensity can be used to detect the tiny changes
in the arm length, which evidences the contraction/stretching effect caused by an incoming GW.
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Figure 2. Design sensitivity curves of the GW antennas. This diagram presents the spectral density of the in-
strumental noise for the various GW antennas of the global network. This is also referred to as sensitivity curves (the
lower the noise, the more sensitive the GW antenna). We show here the design curves and not the current status of the
experimental ones. Several detectors are already running at design sensitivity.
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Figure 3. Relative orientation of the source and GW detector and associated angles. In the representation
given here, the GW impinges the antenna with a normal incidence. In this (rather unlikely) situation, the antenna gain
|F | is maximized. The alignment is optimal for face-on sources (with an inclination angle ǫ = 0).
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Figure 4. Chirplets and chains of chirplets. Upper plot : We refer to short linear chirps joining two successive nodes
of the TF grid as chirplets. A chain of chirplets is a piecewise linear chirp and appears as a broken line. We limit the
chirplet slope (domain associated to the 1st order regularity) and the difference of successive slopes (domain associated
to the 2nd order regularity). Bottom plot : The chirplet amplitude takes values in dyadic scale (which includes also zero).
The amplitude of the chirplet chain is thus piecewise constant. We limit the variations of the amplitude (as indicated by
1st order regularity).



-4
-3
-2
-1
 0
 1
 2
 3
 4

 0  200  400  600  800  1000

am
pl

itu
de

 [A
U

]

time

(a) chirp in Gaussian noise, SNR= 20.0

chirp+noise

-4
-3
-2
-1
 0
 1
 2
 3
 4

 0  200  400  600  800  1000
am

pl
itu

de
 [A

U
]

time

(b) noise free chirp

noise free chirp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  200  400  600  800  1000

fr
eq

ue
nc

y

time

(c) discrete WV

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  200  400  600  800  1000

fr
eq

ue
nc

y

time

(d) best CC, freq. evolution

chirp freq.
best CC

Figure 5. Detection/estimation of a “random” chirp. This is an illustration of the detection method described
in Sec. 2.3. The test signal (b) is a “random” chirp (whose frequency follows a random walk in the time-frequency
plane). We show in (a) and (c) the noisy chirp and its WV distribution. The signal to noise ratio is set to ρ = 20 with
ρ2 =

∑N−1

k=0
s2(tk) (assuming a noise variance unity). In (d), we compare the exact chirp frequency f(t) (thin/green) with

the estimation f̃(t) (bold/red) given by the maximum of ℓ̂p̃(x) and found by the proposed algorithm (best TF path in
WV found by dynamic programming).
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Figure 6. Detection/estimation of a “random” chirp with amplitude modulation. This is an illustration of the
detection method described in Sec. 3.1. The test signal (a) is a “random” chirp with Hanning window as an envelope. (a)
and (c) are the noisy chirp and its WV distribution respectively. The signal to noise ratio is set to ρ = 12. In (b) and
(d), we compare the exact amplitude and frequency A(t) (normalized to unit norm) and f(t) of the chirp (thin/green)
with the estimation ã(t) and f̃(t) (shown only when ã(t) > 0) given by the maximum of ℓ̂p̃(x) and found by the proposed
algorithm. The time support of estimated amplitude appears narrower as compared to the exact one. This is partly due
to the coarse sampling of the chirplet amplitude.
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Figure 7. Coherent detection/estimation of a “random” chirp with network of three GW antennas. In the
data of three GW antennas (the two LIGO and Virgo, see Fig. 1), we inject (a) a “random” GW chirp emitted from a
source at the position marked with a “+” at θ = 0.99 rad and φ = 1.75 rad. The full sky search described in Sec. 3.2
produces a likelihood landscape (b) where we select the maximum. This is the detection point and it is indicated with
“×”. In (c) we show the combined WV distribution of the synthetic streams at the detection point. In (d), we compare
the exact frequency of the chirp (thin/green) with the estimation obtained at the detection point.


