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Discrete Time and Frequency Wigner–Ville
Distribution: Moyal’s Formula and Aliasing

Éric Chassande-Mottin and Archana Pai

Abstract—In this letter, we propose a new definition of the dis-
crete time and frequency Wigner–Ville distribution. The proposed
distribution not only displays a readable representation (small
aliasing) but also exhibits unitarity and is easy to compute. We
compare the time-frequency representation associated with this
proposed definition with other existing ones.

Index Terms—Time-frequency analysis.

I. MOTIVATION

OVER the last 50 years, a large effort has been made to
efficiently represent a signal jointly in time and frequency.

This has led to a wide variety of possible time-frequency (TF)
representations (TFRs) (see, e.g., [1]). The characteristics of the
signal and the type of information of interest decide the most
suitable choice of TFR to be considered for signal analysis.

The Wigner–Ville (WV) distribution is a common candidate
among various quadratic TFRs, as it is simple and satisfies many
interesting mathematical properties. For continuous time and
frequency variables and a signal or in the Hardy
space , the WV distribution is defined as [2]

(1)

Besides other properties, the WV distribution obeys unitarity,
a.k.a. Moyal’s formula [1]

(2)

As unitarity allows an equivalent TF formulation of opera-
tions performed either in time or in frequency, it is a central in-
gredient for the design of TF-based processing algorithms1 [2].

The use of sampled signals demands unitary discrete time
and frequency distributions (for evaluation with a computer).
This extension from a continuous to a discrete TF plane is not
straightforward. In the literature, several definitions of fully dis-
crete and unitary WV have been proposed for periodic signals
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1Moyal’s formula provides the optimal TF statistic for the detection of chirp
signals, a crucial result with applications in areas like gravitational wave detec-
tion [3].

[4]–[6]. However, there is no satisfactory WV distribution asso-
ciated with band-limited nonperiodic signals of finite time sup-
port. Available solutions either fail in obtaining unitarity or lead
to a TFR complicated by many aliasing terms.

In Section II, we propose a fully discrete WV adapted to
this case. It satisfies a set of useful properties listed in Table I
(proofs are detailed in Section III) and displays a more “read-
able” representation (with aliasing terms of smaller amplitudes)
than other definitions. In Section IV, we illustrate this last point
and explain the origin of the residual aliasing with an example of
linear chirp. Here, we give priority to the properties (primarily
unitarity) as opposed to investigating aliased-free discrete WVs
(see, e.g., [7]) with values exactly matching the continuous WV.

II. PROPOSAL OF A DISCRETE TIME AND FREQUENCY WV

Let with
sampling frequency ( ) be a discrete time series with
an even number of samples [with the best choice for
fast computation with fast Fourier transform (FFT)]. We define
the discrete WV distribution of for as

(3)

where2 , ,
, and denotes the greatest integer less than

or equal to .
It is evident that is a discrete Fourier trans-

form (DFT) of an even sequence and, hence, is real. The
time and frequency axes in physical units are and

. Thus, the frequency axis gets sampled at
twice the usual rate.

By separating the summation over even and odd ’s in (3), it
can be easily shown that is a quadratic transform of

, as defined in Table I, with kernel

(4)

where is the Kronecker symbol, i.e., if and
otherwise. This kernel is the sum of two Kronecker deltas; the
second delta can be obtained from the first by replacing with

. In Section IV, we will deduce from this relation a rule
explaining the residual aliasing of this WV.

2Equation (3) is formally equivalent to the definition B in [8, (73a)] provided
a specific sampling of the frequency axis, i.e., � = �m=N . However, all results
in [8] are obtained assuming a continuous frequency axis. The discretization of
the frequency axis introduces significant difficulty in proving Moyal’s formula.
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TABLE I
LIST OF THE PROPERTIES OF THE PROPOSED WV DISTRIBUTION IN (3)

III. PROPERTIES OF THE PROPOSED WV

In this section, we prove several properties of the fully dis-
crete WV proposed in Section II.

A. Energy Distribution With Exact Marginals

We define the energy of the signal by

(5)

where the second half of the above equation is obtained
from Parseval’s theorem combined with the definition of the
DFT . Thus, and

can be interpreted as time and frequency energy
distributions, respectively.

1) Time Marginal Property: For a fixed , summing the WV
in (3) marginally along the frequency axis, we have

(6)

where . Using the relation
, where , we obtain the

time marginal property

(7)

Summing both sides of (7) over , we obtain the energy .
Thus, the proposed WV distribution is a TF energy distribution.

2) Frequency Marginal Property: We first note that the two
Kronecker deltas in divide into two parts the sum-
mation over in , as expressed in the first row of Table I.
The first part contains terms with even and the second
part with odd . Therefore, we have

(8)

In other words, the right-hand side of (8) gives all possible
combinations of , yielding the frequency marginal
property, as stated in Table I.

B. Covariance to Time and Frequency Shifts

Let be the TF shifted
version of with and (the proof is similar for

). In physical units, the time and frequency shifts are
and . Since the signal is of finite

support and is bandlimited, the time and frequency shifts in
the signal give rise to boundary effects. To ensure that the shifted
signal still fully lies in the TF plane, we assume ,
for and . Let the time axis
be oriented from left to right. As is translated to the right,
only zeros enter from the left and zeros exit to the right of .
Further, is assumed to be supported in frequency up to

. In order to prove the covariance of the proposed WV
under time and frequency shifts, we need to obtain the relation
between and . We have

(9)

where and . For
, all values of are zero. For
, by definition, . The product

vanishes for and
can be suppressed from the sum. For

. The product terms being
zeros for can be added to the sum.

Thus, we revise the limits of summation and replace by
in (9). We conclude that . This implies
that is obtained by translating in time and frequency with

or equivalently
in physical units.

C. Moyal’s Formula

Let and be the WV distributions of two discrete time
series and . From the left-hand side of the
discretized version of Moyal’s formula and equation (3), we get

(10)

Note that the maximum value of is takes
all possible values between . Thus, is
nonzero only when , yielding

(11)

A step toward the proof of Moyal’s formula is to make the
change of running variables, i.e., to apply the mapping

. The domain of the mapping
is restricted by the summation limits in the right-hand side
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Fig. 1. MappingM : (n; k) 7! (p; q).

of (11), which is illustrated for in Fig. 1. Since
, the image of this mapping is a subset of the

discrete square in the plane, i.e.,
.

The geometrical interpretation of this mapping gives clear
understanding of its nature. For even , we have

, whereas for odd , we get
. Thus, for a given

, the set of ordered pairs , when runs from
to , gets mapped to two secondary diagonals of , i.e., all
terms having and .

We further elaborate this by splitting the summation over
in the right-hand side of (11), in turn splitting domain into
two parts. The first terms of the domain (for

) map to lower half of the triangle of ,
and the remaining terms (for )
get mapped to the upper half triangle of (see Fig. 1).

It is evident that the two distinct pairs in are transformed
by into two distinct images in . A direct calculation
shows that the cardinal card is
equal to card . This proves to be one to one from to .
Thus, we make the change of variables from dependent

to independent , which proves the unitarity of WV

(12)

D. Weyl’s Correspondence

Let be the linear operator with kernel
acting on for such that

. We define Weyl’s symbol , cor-
responding to , as

(13)

We show that Weyl’s symbol allows one to reformulate
quadratic forms involving in the TF plane through Weyl’s
correspondence. Let be the cross WV distribution
obtained from (3) by replacing the second term in by . From

(13) and using the mapping in Section III-C, we get Weyl’s
correspondence

(14)

IV. IMPLEMENTATION AND EXAMPLES

Let be the time series
of size such that each sample of is duplicated. Noting
that , the definition in (3) can be rewritten as

(15)

Therefore, the implementation3 of involves computation
of FFTs with time base of the local autocorrelation
function of at even locations. The overall cost scales with

and the output can be stored in a array.

A. Three Variants of the Fully Discrete WV Distribution

We review several alternative definitions of WV with a special
emphasis on Moyal’s formula.

Claasen and Mecklenbräuker (CM): The discretization of
(1) (first published in [9]) requires to be replaced by an
equivalent halfband signal, i.e., signal whose Fourier transform
is supported over half the Nyquist band. The halfband counter-
part of a signal sampled at the Nyquist rate can be computed
in various ways. We choose the sequence , which results
from the resampling of at twice its rate. This yields a dis-
crete WV similar to (3) (same )

(16)

with the difference that the oversampled signal is used in place
of the signal with duplicated samples. The sampling of the TF
plane is the same as before, i.e., an array of size . The
representation given by (16) is closely related to the continuous
one, i.e., . However, it does not sat-
isfy Moyal’s formula.

Peyrin and Prost (PP): The discretization of (1) presented in
[5] leads to

(17)

3Freely distributed scripts are available at http://www.obs-nice.fr/ecm for re-
producing all the illustrations presented here.
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PP can be stored in a array. It does not use a halfband
signal and, thus, gets affected by aliasing. However,
is a TF energy distribution and satisfies Moyal’s formula

(18)

Richman et al. and O’Neill et al. (RO): Two ap-
proaches—one based on group theoretic arguments [6] and the
other on an axiomatic method [4]—independently yielded

(19)

where4 denotes an integer such that . It
exists for odd , and thus, . RO can be
stored in an array of size and satisfies Moyal’s formula

(20)

B. Comparisons and Aliasing Issue Via a Simulation Example

Here, we compare the proposed WV with the other WVs re-
viewed in Section IV-A. Further, we explain aliasing in this pro-
posed WV. For both, we use the example of a linear chirp, which
is a frequency modulated signal with phase

and frequency
linearly increasing from 0 to over .

Comparison With Other TFRs: In Fig. 2, we present various
TFRs; CM in (a), PP in (b), RO in (c), and the proposed WV in
(d) for the linear chirp with and for (a), (b),
and (d), while for (c). The proposed WV in (d) is less
affected by aliasing terms5 compared to (b) and (c). It is closer
to what one expects from continuous TF analysis [see (a)].

Understanding Aliasing in the Proposed WV: Recall that
the kernel is composed of two Kronecker deltas.
Thus, the proposed WV can be rewritten as the sum of two
terms: . The first term
has a periodicity of , i.e., . The
second term can be obtained from the first by a transformation

, a small time shift operation that
consequently makes a periodic sign change. Thus, the second
term has a periodicity of and switches sign at half its period,
i.e., . Aliasing
can be understood by comparing these two terms.

We demonstrate this with the above-described linear chirp.
A closed-form expression for the WV of the above linear chirp
can be obtained using
with and

. The two terms and [see
Fig. 2(e) and (f)] add constructively in the positive frequencies

4Note that (17) and (19) can be equivalently formulated by removing the
modulo [ � ] and assuming x(k) to be N -periodic.

5We refer to “aliasing terms” as artifacts appearing in the discrete WV but not
in the continuous one. These terms can be produced by time and/or frequency
folding of signal components, e.g., when the local autocorrelation function is
undersampled. They can also result from the quadratic interaction (interference)
of the signal components with their periodic copies.

Fig. 2. Linear chirp—Top: various TFRs defined in Section 4: (a) CM, (16),
(b) PP, (17), and (c) RO, (19). Bottom: (d) proposed WV in (3), (e) first term
v(n;m), and (f) second term v (n;m). We show two contours at levels +e =4
(black) and �e =4 (gray).

, whereas due to the small time shift be-
tween them, their destructive addition in the negative frequen-
cies leaves behind the residual aliasing in WV [see Fig. 2(d);

]. This rule for the construction of aliasing
terms in the proposed WV is not restricted to this example and
can be applied in general. In fact, it is an artifact of the kernel

as noted in Section II.

V. CONCLUDING REMARKS

In this letter, we have proposed a new fully discrete WV dis-
tribution. We have shown that it not only satisfies most of the
important properties of its continuous counterpart but also dis-
plays a representation close to the continuous case (with small
aliasing). In summary, the proposed distribution can prove to be
an important tool for TF-based signal processing.
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