An update on Archeops

Jacques Delabrouille

on behalf of

the Archeops Collaboration

JENAM, September 5th, 2002 Porto (Portugal)

Archeops

The Archeops collaboration

• France

CESR, CRTBT, CSNSM, IAP, IAS, ISN, LAL, LAOG, PCC/CdF, OMP, SPP/CEA

- Italy Univ. La Sapienza (Rome), IROE CNR
- Russia Landau Ins. of Theoretical Physics
- · U.K.
- U.S.A. CALTECH, JPL, Univ. Of Minnesota

http://www.archeops.org

Outline

- The Archeops concept
- The instrument
- Archeops flights
- Data and processing pipelines
- Science with Archeops data

Outline

• The Archeops concept

- The instrument
- Archeops flights
- The data and the processing pipelines
- Science with Archeops data

Published CMB spectrum data

The Archeops concept

Concept similar to Planck HFI

- Dilution cryostat cooling bolometers to 100 mK
- Spider web bolometers
- Off-axis Gregorian telescope
- Scanning the sky along large circles
- High angular resolution : ~ 8-12 arcmin

The Archeops gondola

- 1.5 meter primary
- Altitude : 30-40 km
- Elevation : 41°
- Rotation speed : 2 rpm

Scan strategy

Objective : a 24-hour flight during the arctic night

The Archeops concept (cont'd)

- Multiband photometer
 - · 22 bolometers
 - 4 frequency bands : 143, 217, 353, 545 GHz

Outline

• The Archeops concept

• The instrument

- Archeops flights
- The data and the processing pipelines
- Science with Archeops data

The ARCHEOPS cooling system

- Helium tank at T= 4.2K
- Open circuit dilution fridge
 - Similar to that built for Planck
 - 3He et 4He tanks
 - Mixture pumped with a charcoal pump
 - Temperature reached : **75 mK**
- Big input window (Ø 160mm)
 - First stage cooled to about 10K with4He vapour (7.5K during flight)
 - Flexible polypropylene window
 - Protection value opening only at low outside pressure

The focal plane

Bolometers

Spider Web bolometers

Low heat capacity
Large photon collecting area
Little sensitivity to cosmic rays

(Mauskopf et al. Appl. Opt., 36, 1997)

Archeops horns

Archeops baffling system

Pointing and attitude monitoring

Stellar sensor

- 'Small' (40cm) optical telescope with a photodiode array (Italy)
- Stars identified a posteriori with a dedicated matching software (LAL)
- Additional information: GPS, gyroscopes, magnetometer
 - The GPS gives balloon position (longitude, latitude, altitude)
 - The gyroscopes give the rotation speed and pendulation
 - The magnetometer gives phase information (magnetic north)

Outline

• The Archeops concept

• The instrument

Archeops flights

Data and processing pipelines

Science with Archeops data

Trapani Test flight

Test flight from Trapani July 1999

- 4 hours of night-time data
- 4 bolometers worked well (143, 217, 353 GHz)

- Cryostat OK
- Stellar sensor OK
- On board recorder OK

Scientific flights

Getting ready : ARCHEOPS ground calibration

Sensitivity measurements

Mirror alignment

Launch with auxiliary balloons

Gondola supported by auxiliary balloons (and held by the Archeops team !)

Filling the main balloon

Launch !!!

Archeops flights from Kiruna

- Requirements to fly :
 - Not too much wind on ground (< 2 m/s)
 - Not too much snowing (avoid filling the mirror with snow !)
 - Stratospheric winds towards east and not too strong
 - Moon, Sun to be avoided, Jupiter to be seen
 - Agreements and contracts with Russians signed...
- Four flights from Kiruna :

]	Flight duration	1
Date	at ceiling	
12 january 2001	11	Problem with a flow-meter
29 january 2001	7h	low altitude because of excessive winds
19 january 2002	2h	Balloon valve blocked
7 february 2002	19h	12.5 h of excellent night-time data

First Flight january 12th 2001

- Early failure of a flow rate meter
- Quick landing in Finland

Fast recovery ...

First Scientific Flight (KS1)

Ceiling altitude : 31.5 km

Archeops coverage (KS1 flight)

Archeops KS1 (ns=128)

temperature always < 100 mK during the 7.5 hours of scientific data

Third Scientific Flight (KS3)

- Balloon launched at 12h44 UT February 7th
- Balloon landed at 10h20 UT February 8th
- Ceiling altitude:
 34 km

Landing close to Noril'sk (Siberia)

February 2002 flight : sky coverage

15.14 - 26.59 UT, Sky Coverage = 29.8%

Archeops coverage (Kiruna, 7 february 2002)

12.5 hours of night data at ceiling + 6.5 hours during the day

Outline

- The Archeops concept
- The instrument
- Archeops flights

• The data and the processing pipelines

Science with Archeops data

Data processing pipeline

- Cleaning the data
- Pointing reconstruction
- Calibration
- Map-making
- Component separation
- $\cdot C_1$ spectrum estimation

A look at Archeops timelines

Data cleaning

Macias-Perez, Madet, Filliatre, Renault, Désert et al.

Very low frequencies (1 minute to 1 hour)

- Correct for slow gain drifts
- •Decorrelate slow signals proportional to airmass (altitude , elevation)
- •Decorrelate 0.1K, 1.6K 10K temperature fluctuations

• High frequency (1 - 100 Hz)

- •Remove cosmic-ray hits (glitches)
- •Remove correlated EM noise
- •Remove microphonic bursts
- •Remove noise synchronous with acquisition frequency

• A spinning frequency (30 sec)

- •separate ozone cloud emission using multi-band data
- Flag all bad data

Pointing

Couchot, Bourrachot et al., Hamilton, Versillé, et al.

Position from GPS, attitude reconstruction using stellar sensor data (matched with a catalog of known stars)

Calibration

Lagache et al., Désert et al., Benoit et al.

About 20% systematic discrepancy between methods still being investigated

Final absolute calibration error expected to be better than ~ 5%

Map making

MAIN ISSUE

Yvon, Mayet et al., Teyssier, Prunet, Doré, Vibert et al.

Residual low frequency drifts below ~1 Hz + insufficient scan crossings lead to significant striping

SOLUTIONS

Method 1: strong filtering followed by weighted co-addition

Method 2 (MAPCUMBA) : multi-resolution implementation of optimal map making

Method 3 (MIRAGE) : a combination of filtering and optimal map making

Power spectrum extraction

THREE METHODS

- MASTER method (Hivon et al.) :
 - Use sub-optimal maps obtained by filtering and co-addition
 - Use maps only from the best tree bolometers (1-143 & 2-217)
 - Make a stringent galactic cut (use only b>30°)
 - Correct for filtering effects on C_1 by Monte-Carlo methods
- Optimal Map method :
 - Make optimal maps with e.g. MAPCUMBA
 - C1 estimation on maps with, e.g. SPICE (Szapudi et al.)
- Blind spectral matching method

An update on Archeops

Current

baseline.

In progress

Amblard et al.

Blind spectral matching method

Cardoso et al.

LINEAR MODEL : each detector's map is a linear superposition of a number of components (sources)

Blind spectral matching method (cont 'd)

The data autocorrelation can be written as

• Find by minimising the mismatch between Y and $ASA^{+} + N$

the mixing matrix A
a band-power parameterised model of S
a white noise model of N

Component separation

Patanchon et al.

Knowing A, S and N, the best estimated component maps are obtained by Wiener filtering :

$$\hat{s} = [A^{\dagger}N^{-1}A + S^{-1}]^{-1}A^{\dagger}N^{-1}Y$$

Bouchet et al.

This can be done using estimated values of A, S and N obtained by spectral matching (blind component separation)

Outline

- The Archeops concept
- The instrument
- Archeops flights
- The data and the processing pipelines
- Science with Archeops data

Science with Archeops data

Half of the galactic plane mapped at 143, 217, 353 and 545 GHz

Constraints on foreground polarisation at 353 GHz

CMB fluctuations detected !

Good measurement of the CMB power spectrum in the I=10-800 range

First-order KS3 maps around Galactic plane

143 GHz

353 GHz

217 GHz

545 GHz

Maps covers 1/3 of the galactic plane

Comparison 143-217 GHz (best detectors)

Map Mean 143+217

Map Diff 143-217

Archeops + Maxima

Archeops - Maxima

Preliminary blind separation results far from galactic plane, high-redundancy region

Two-component separation using 18 maps (143-353 GHz)

• One of the recovered components is compatible with CMB (frequency channel dependence flat in units of δK_{CMB} , power spectrum displaying a clear peak at I~200)

• The other component is correlated detector noise (essentially low-level residual stripes)

• No detectable galactic foreground contamination in this region at this stage

about 40 deg.

Wiener filtered recovered component map

Estimated C_1 sensitivity

