Measurement of Electrostatic Dissipation on GRS for LISA / LPF

University of Trento and INFN, Italy
Content

1. Electrostatic dissipation noise on GRS
2. New measurement challenge with two techniques
3. Discussion and implication to LISA
1.1 Electrostatic dissipation-related noise

- Two sources to produce electrostatic dissipation: [1, 2]
 1. Ohmic delay τ arising from sensor circuitry (for instance due to the LPFilter effect)
 \[
 \delta_{\text{Ohm}} = \omega \tau
 \]
 2. Freq-independent electrostatic loss arising from conductor surface
 \[
 \delta_{\text{ES}} : \text{more dangerous at low freq}
 \]

- Dissipation contributes potential fluctuation V_n:
 mixing with TM potential δV to produce force noise on TM

- LISA requires $\delta < 10^{-5}$ [3]

$$S_a^{1/2}(f) \sim 3 \times 10^{-15} \text{ m}^2/\sqrt{\text{Hz}} \left(\frac{\delta}{10^{-5}} \right)^{1/2} \left(\frac{10^{-4} \text{ Hz}}{f} \right)^{1/2} \left(\frac{Q_M}{10^7 \text{ e}} \right)$$

1.2 Dissipation model

Actuation / Sensing Circuitry (ohmic losses δ_{ohm})

Intrinsic surface losses (model for freq-ind δ_{ES}) *

Ideal test mass (electrode capacitance C)

$\tau \approx (R_1 + R_2)C_2 + R_1C_1$

$\delta_{\text{Ohm}} = \omega \tau$

$Z_\delta = \frac{1}{i \omega C \ln(\tau_{\text{MAX}} / \tau_{\text{MIN}})} \left\{ i \tan^{-1} \omega \tau_{\text{MAX}} - \tan^{-1} \omega \tau_{\text{MIN}} \right\} + \frac{1}{2} \ln \left(\frac{1 + (\omega \tau_{\text{MAX}})^2}{1 + (\omega \tau_{\text{MIN}})^2} \right)$

$\approx \frac{1}{i \omega C} \left[\frac{C \pi}{2 \Delta \ln(\tau_{\text{MAX}} / \tau_{\text{MIN}})} \right] \left(i + \frac{2}{\pi} \ln \omega \tau_{\text{MAX}} \right)$

$\tau_{\text{MIN}} \ll \tau = R_i C_\Delta \ll \tau_{\text{MAX}}$

$\frac{1}{i \omega C_e} = \frac{1}{i \omega C} + Z_\delta$

$\delta_{\text{ES}} = \frac{\text{Im}(C_e)}{\text{Re}(C_e)} \approx \frac{C \pi}{2 \Delta \ln(\tau_{\text{MAX}} / \tau_{\text{MIN}})} \propto \frac{1}{d}$

$F_{\text{ele}} \propto \frac{1}{d^2}$

1.3 Recent measurements on electrode noise (2012)

- In general, noisy electrostatic potentials mix with DC voltage differences – such as that caused by TM charging – to create force noise

\[
S_{F}^{1/2} = \left(\frac{q}{C_{r}} \right) \frac{\partial C}{\partial x} S_{\Delta x}^{1/2} \approx 1.3 \text{ fN/Hz}^{1/2} \times \left(\frac{q}{10^7 e} \right) \times \left(\frac{S_{\Delta x}^{1/2}}{100 \mu V/Hz^{1/2}} \right)
\]

- Recent experimental upper limit on \(D_{x} \) of 80 mV / Hz\(^{1/2} \) at 1 mHz *
 \(\Rightarrow \) marginally OK for LISA

- \(\delta = 10^{-5} \) would give 20 mV / Hz\(^{1/2} \) at 0.1 mHz

* F. Antonucci et al, PRL 108 181101 (2012)
1.4 Previous measurements on surface loss (2005)

Object: A GRS prototype, Au-coated Mo electrodes, 2 mm capacitive gap

Tech: directly measure transient force due to dissipation by square wave modulation [1, 2]

Square mod and Comp voltages

Transient force and loss extraction

Results:
For 1W2E pair, \(\delta = (-0.3 \pm 1.0) \times 10^{-7} \)
For 2W1E pair, \(\delta = (10.6 \pm 0.6) \times 10^{-7} \)

Motivation of next step:
investigate dielectric loss for LPF GRS flight model with higher precision

2.1 Measurement with ringdown tech (2010~2012)

Object: A LPF flight model, Au-coated electrodes, 4 mm capacitive gap along x

Tech1: measure pendulum amplitude decay as a function of electrode voltages

\[
\frac{1}{\tau_{\text{exp}}} = \frac{1}{\tau_v} + \frac{1}{\sqrt{1/(\Gamma_F + \Gamma_{\text{ES}})}} \cdot (\Gamma_F \cdot \delta_F - \Gamma_{\text{ES}} \cdot \delta_{\text{ES}})
\]

Viscous damping \(x 10^6 \)
Fiber damping
Electrostatic damping

![Graph showing decay time extraction](image)

Table:

<table>
<thead>
<tr>
<th>Fit condition</th>
<th>(\delta_{\text{ES}}) (10^{-7})</th>
<th>(\delta_F) (10^{-7})</th>
<th>(1/\tau_v) (10^{-8} /s)</th>
<th>(\chi^2)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 free parameters</td>
<td>7.6 (7.5)</td>
<td>-4 (12)</td>
<td>1.1 (1.6)</td>
<td>1.2 (20 DOF)</td>
<td>Physical</td>
</tr>
<tr>
<td>Assuming (1/\tau_v) only from gas</td>
<td>4.5 (1.3)</td>
<td>8.7 (.4)</td>
<td>0.43</td>
<td>1.2 (21 DOF)</td>
<td>Physical</td>
</tr>
<tr>
<td>Assuming (\delta_{\text{ES}} = 0)</td>
<td>- -</td>
<td>16 (.03)</td>
<td>-0.5 (-.3)</td>
<td>1.2 (21 DOF)</td>
<td>Not physical</td>
</tr>
</tbody>
</table>

Result: upper limit of \(\delta_{\text{ES}} 1.5 \times 10^{-6}. \)
2.2 Measurement with modulation tech (2011~2012)

Tech2: Use perfect Square Wave modulation (ideally gives constant torque proportional to V^2), delays due to lossy elements cause force transients proportional to delta at every square wave transition

![Diagram of Square mod and Com voltages and Circuit and surface losses (τ & δ_ES)]

- +/- V_{com} and out of phase square wave applied to diagonal pairs, to avoid the change of TM potential
- enable to measure circuit loss and surface loss τ & δ_{ES} together
- Huge DC torque ($\sim 10^{-10} \text{ N m}$) cancelled, small transient torque left ($\sim 10^{-17} \text{ N m} \leftrightarrow \delta_{ES} \sim 10^{-7}$) for losses extraction

Ideal SW to one diagonal pair

$$V_{MOD} = \sum_{j \text{odd}} \frac{4V_M}{j\pi} \sin(\omega_M t)$$

Compensation voltages to the other pair

$$N_{DC} \equiv \frac{\partial C}{\partial \phi} V_{COM}^2$$

Huge DC torque cancelled
Small transient torque left

* L. Carbone et al, 6th Amaldi, Japan, 2005
2.3 Illustration of measured signal

Electrode voltage:

Resulting torque ($\propto V^2$):

No losses

Ohmic delay

Frequency independent δ

• 2f signal (+ other even harmonics)
• Nearly “Dirac δ-function” for ohmic delay (all cosine)
• Longer lived signal for frequency independent δ_{ES} (both sine and cosine)

\[
\begin{align*}
\frac{-N_{2f}}{N_{DC}} & \approx \left[\delta_{ES} \cdot \left(\frac{4}{\pi} \right)^2 \frac{2}{\pi} \left(\sum_{j, \text{odd}} \frac{\ln(j+2)}{j(j+2)} \right) + 8 f_M \tau \right] \cos (2\omega_M t) + \left[\delta_{ES} \cdot \left(\frac{4}{\pi} \right)^2 \right] \sin (2\omega_M t) \\
& \approx 0.681 \\
\frac{-N_{4f}}{N_{DC}} & \approx \left[\delta_{ES} \cdot \left(\frac{4}{\pi} \right)^2 \frac{2}{\pi} \left(\sum_{j, \text{odd}} \frac{\ln(j+4)}{j(j+4)} - \frac{\ln 3}{3} \right) + 8 f_M \tau \right] \cos (4\omega_M t) + \left[\delta_{ES} \cdot \left(\frac{2}{3} \right) \left(\frac{4}{\pi} \right)^2 \right] \sin (4\omega_M t) \\
& \approx 0.574 \\
& \approx 0.67
\end{align*}
\]
2.4 Sensitivity requirements

For resolution $\delta_{ES} = 10^{-7}$

\Rightarrow with $V_M = 8$ V need 2f torque resolution 0.02 fNm

Noise of current TP ~ 1 fNm/Hz$^{1/2}$ @ 1mHz

10000 s statistical resolution $\Rightarrow 0.01$ fNm @ 1mHz

External torque noise of TP with fused silica fiber
2.5 Experimental noises and suppression

Challenges and solutions:

• **Actuation filter gives 400 μs ohmic delay (δ 10^{-5} at 3 mHz)**
 → Short filter (and also 100 kHz injection, readout transformer circuitry, also responsible for 2f force transients)

• **Large DC bias torque signals at odd harmonics (non-linear coupling into 2f/4f/6f signal)**
 → Correct mod electrode potential difference to < 1 bit resolution
 +/− 150 μV still gives 3 fNm signal
 → Compensation of mean electrode potential to null translation dependence

• **AC detector non-linearities, semi-periodic jumps of up to 100 nrad (1 fN m)**
 → Calibrate and correct in data pre-processing

• **Modulation of electrostatic stiffness at 1f mixes with DC bias signals to give 2f signal**
 → Measure period difference, correct stiffness in time domain torque extraction

• **V_m modulates V_TM when off-centred, fake delta signal due to switch of V_TM**
 (Δx = 50 um ↔ δ = 3e-8)
 → Calibrate and correct in data post-processing
2.6 Experimental transient torque

- Tests for both pairs: $f_M = 1.25 \text{ mHz}$, $V_M = 8 \text{ V}$, integral time $> 80 \text{ h}$;
- Get the averaged transient torque and compare with theoretical prediction;
- The signal form is as expected for model!

(model works well, $\delta_{ES} \sim 3e-7$)
2.7 Torque demodulation and δ extraction

Data Process:

(1) Several tests at different freq in [0.2 2] mHz,
(2) For each run, demod sin/cos torque for 2f/4f/6f
(3) Fit to sin torque of one group to get δ_{ES} and fit to cos torque to get both δ_{ES} and τ

Result: δ_{ES} and τ from different harmonics consistent in 2σ
2.8 Investigation of dependence of delta on gap

- Purpose for further study:
 1. Experimentally study if δ_{ES} proportional to C, compare with theoretical analysis
 - Rotate housing (or TM) to change capacitance
 2. Test δ_{ES} in different freq to see if δ_{ES} freq-ind
 - test at different f_{MOD} as wider as our experimental resolution allows

\[\delta_{ES} \approx \frac{C\pi}{2C_{\Delta} \ln\left(\frac{\tau_{MAX}}{\tau_{MIN}}\right)} \propto \frac{1}{d} \]

For each diagonal pair, test δ_{ES} at three configurations:

- $d_{0}=4\text{mm}$
- $\Delta d \approx 0.4\text{mm}$

- $\varphi=-30\text{ mrad}$
- $\varphi=0$
- $\varphi=30\text{ mrad}$

rotating housing clockwise
2.9 Result of residual τ

For each pair, fit all data from all three configurations:

<table>
<thead>
<tr>
<th>Pair</th>
<th>τ_1 (μs)*</th>
<th>τ_e (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N/2S</td>
<td>3.4</td>
<td>-1.6(0.7)</td>
</tr>
<tr>
<td>2N/1S</td>
<td>3.4</td>
<td>3(1)</td>
</tr>
</tbody>
</table>

* residual ohmic delay from slew rate of mod switch

Result:
- residual τ consistent with theoretical expectation in few σ;
- δ_{ES} is freq-independent in freq range tested
- for 1N2S, there still some systematic error

$$\Delta \delta \approx 2 \times 10^{-8} \left(\frac{f_M}{1 \text{ mHz}} \right) \left(\frac{\Delta \tau}{3.4 \text{ μs}} \right)$$
2.10 Result of $\delta_{ES}(X_n = 20 \, \mu \text{m})$

* After taking into account the translation readout uncertainty 20 μ m

<table>
<thead>
<tr>
<th></th>
<th>smaller gap</th>
<th>centered</th>
<th>Larger gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{ES}</td>
<td>3.18(0.05)</td>
<td>2.83(0.07)</td>
<td>2.67(0.07)</td>
</tr>
<tr>
<td>Chi^2</td>
<td>1.3 (408 DOF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>smaller gap</th>
<th>centered</th>
<th>Larger gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{ES}</td>
<td>3.49(0.12)</td>
<td>2.95(0.07)</td>
<td>2.68(0.09)</td>
</tr>
<tr>
<td>Chi^2</td>
<td>1.1 (270 DOF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Feature proportional-to-C verified experimentally, tests in a relative wider capacitance range may be also interesting;

(2) δ_{ES} from two pairs sensitive in our facility seem uniform!
3.1 Discussion: possible sources of δ_{ES}

* Before venting: GRS kept staying in 3×10^{-6} Pa for more than two years
* Venting: venting chamber to lab atmosphere for three days by a Φ 2.5 cm tube of length \sim 30 cm (to absorb dielectric)
* After venting: pump chamber to pressure lower than 10^{-5} Pa

<table>
<thead>
<tr>
<th>Position</th>
<th>When TM is centered</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2N/1S$</td>
<td>46 runs (before venting)</td>
</tr>
<tr>
<td></td>
<td>8 runs (after venting)</td>
</tr>
<tr>
<td>δ_{ES} (1.e-7)</td>
<td>$2.95(0.07)$</td>
</tr>
<tr>
<td>τ_e (μs)</td>
<td>3(1)</td>
</tr>
<tr>
<td>Chi^2</td>
<td>1.1 (270 DOF)</td>
</tr>
</tbody>
</table>

Result:
(1) Tests are basically reproducible, δ_{ES} before/after venting consistent in 2σ (difference only 5%)
(2) δ_{ES} should not arise from the surface layers condense quickly from lab atmosphere
3.1 Discussion: possible sources of δ_{ES}

Assuming some dielectric materials absorbed by conductor surface:

$$\varepsilon_r = \varepsilon_{r0}(1 - j\delta_{\varepsilon})$$

$$\delta_{ES} = \frac{\delta_{\varepsilon}}{\varepsilon_r(d-t)+t} \cdot t$$

$$\approx \frac{\delta_{\varepsilon}}{\varepsilon_r} \cdot \frac{t}{d} \quad (t \ll d)$$

$\delta_{ES} = 2.9e-7$, $d = 4$ mm

$\varepsilon_r \sim 8$, $\delta_{\varepsilon} \sim 0.01$, $t \sim 1$ μm

Unlikely that a surface absorbate could be so thick! Need more study ...

<table>
<thead>
<tr>
<th>Materials *</th>
<th>ε_r</th>
<th>$\delta_{\varepsilon}(10^{-4})$</th>
<th>t (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fused quartz</td>
<td>3.8</td>
<td>10 (@50Hz)</td>
<td>4.4</td>
</tr>
<tr>
<td>Alumina</td>
<td>8.5</td>
<td>20 (@50Hz)</td>
<td>4.9</td>
</tr>
<tr>
<td>Air</td>
<td>1</td>
<td>100?</td>
<td>0.12</td>
</tr>
</tbody>
</table>

*http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html
3.2 Summary

(1) 1N2S pair: $\delta_{ES} = (2.83\pm0.07)\times10^{-7}$

2N1S pair: $\delta_{ES} = (2.95\pm0.07)\times10^{-7}$

Loss angle from delay: $\delta_{\text{ohm}} < 2.5\times10^{-8}$ (at 1 mHz)

For LISA, force noise due to the loss lower than 0.1 fm/s²/Hz¹/₂ near 1mHz

(2) Torque wave form due to the losses obeys model very well

(3) The tests varying gap: $\delta \propto C$ (match model well)

(4) δ is freq-independent in freq range tested (match model well)

(5) δ unchanged by venting to air for three days

(6) What causes δ? Need more study...
Thank you!
Any questions are welcome!
2.5 Experimental noises and suppression

(1) Current actuation filter gives ohmic delay $\tau \sim 0.4$ ms ($\delta 10^{-5}$ at 3 mHz)
 - Short filters, reduce ohmic delay to $\tau \sim 4$ μ s, torque contribution from 1 fNm to 0.01 fNm (also 100 kHz injection, readout transformer circuitry, also responsible to 2f torque transient)

(2) AC detector non-linearities, semi-periodic jumps of up to 100 nrad (1 fN m)
 - Calibrate and correct in data pre-processing
2.5 Experimental noises and suppression

(3) Large DC bias torque signals at odd harmonics (non-linear coupling into 2f/4f/6f signal)

→ Carefully compensate stray DC bias of electrodes, minimize variable torque at odd harmonics (Correct mod electrode potential difference to < 1 bit resolution +/- 150 μV still gives 3 fNm signal; Compensation of mean electrode potential to null translation dependence)

\[N(\omega t) \approx V_M \text{sqr}(\omega t) \cdot \left(\delta V_{1N} - \delta V_{2S} \right) \left(\frac{\partial^2 C}{\partial \varphi^2} \right) + \left(x - x_0 \right) \left(\delta V_{1N} + \delta V_{2S} - 2V_{TM} \right) \frac{\partial^2 C}{\partial \varphi \partial x} \]

(4) Modulation of electrostatic stiffness at 1f (\(\Delta \Gamma \sim 2e-11 \text{ Nm/ rad} \)) mixes with DC bias signals to give 2f signal

→ Measure period difference, correct stiffness in time domain torque extraction
2.5 Experimental noises and suppression

- TM translation has another effect: TM potential fluctuation V_{TM} caused by V_{MOD}. The imperfect switch of V_{TM} on transient moment also produces loss mixing with δ_{ES}.

\rightarrow calibrate tilt-charge effect, correct in data post-processing. (Near centred position: $x=50\mu m \leftrightarrow 10\% \delta$)

$$V_{T0} = \frac{4V_{M}}{d_0} \cdot \Delta x \cdot sq(\omega_M t)$$

$$N_{VT0} = \frac{\partial^2 C}{\partial \phi \partial x} \cdot \Delta x \left[-2V_M \cdot sq(\omega_M t)V_{T0} \cdot sq(\omega_{VT0} t) \right] \propto \Delta x^2$$
Summary and discussion

(1) The study focuses on the dielectric dissipation of GRS flight model.
(2) Ringdown tech and square-wave mod tech employed. Final result of δ_{ES} is 2.9e-7, with uncertainty lower than 10%, for all electrodes tested. The value implies its contributed noise for LISA is lower than 0.1 fm/s²/Hz¹/².
(3) Features proportional-to-C and freq-ind are experimentally tested, and match model very well.
(4) Dielectric dissipation on the electrodes studied seem have a good uniformity.
(5) The physical sources and distributions on electrodes of δ_{ES} need more study.

Dissipations of 1TM torsion pendulum associated with GRS flight model surrounding (suspending by fused silica fiber, $V_{inj} = 3.5$ V)

<table>
<thead>
<tr>
<th>Sources</th>
<th>damping</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual gas viscous (fixed)</td>
<td>$d\beta/ dp = 5.6e-8$ Nm/s (at $p = 3.3e-6$ Pa)</td>
<td>3,100,000</td>
</tr>
<tr>
<td>Dielectric loss (fixed)</td>
<td>$\delta_i = 2.9e-7$</td>
<td>26,700,000</td>
</tr>
<tr>
<td>Fiber structural loss</td>
<td>$\delta_{ES} = 9.0(0.3)e-7$</td>
<td>1,020,000 *</td>
</tr>
<tr>
<td>Totally</td>
<td></td>
<td>750,000</td>
</tr>
</tbody>
</table>

* The rest damping could also come from other sources like magnetic field.
3.2 Example of δ_{ES} and τ extraction

Demod even torques for each test (2N/1S pair, large gap, $f_M = 0.35$ mHz)

Fitting to all tests from one group to get τ & δ_{ES} (2N/1S pair, large gap)

- from cos torque: δ_{ES} & τ
- from sin torque: only δ_{ES}
- do the same analysis to 2f/4f/6f torque
3.3 Example of preliminary result: 2N1S pair

Table: 2N1S Pair Measurements

<table>
<thead>
<tr>
<th>C Gap</th>
<th>Smaller gap (group 203: 6 runs)</th>
<th>Centered (group 121: 7 runs)</th>
<th>Larger gap (group 191: 8 runs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2f cosine</td>
<td>$\delta_{ES} = 3.50(0.71)e^{-7}$ $\tau = 4.2(9.5) \mu s$ $\chi^2 = 2.0 (4 \text{ DOF})$</td>
<td>$\delta_{ES} = 3.05(0.36)e^{-7}$ $\tau = -2.1(5.3) \mu s$ $\chi^2 = 1.0 (5 \text{ DOF})$</td>
<td>$\delta_{ES} = 1.84(0.33)e^{-7}$ $\tau = 18.6(5.0) \mu s$ $\chi^2 = 2.1 (6 \text{ DOF})$</td>
</tr>
<tr>
<td>2f sine</td>
<td>$\delta_{ES} = 3.6(0.17)e^{-7}$ $\chi^2 = 0.5 (5 \text{ DOF})$</td>
<td>$\delta_{ES} = 3.14(0.12)e^{-7}$ $\chi^2 = 0.5 (6 \text{ DOF})$</td>
<td>$\delta_{ES} = 2.55 (0.13)e^{-7}$ $\chi^2 = 0.9 (7 \text{ DOF})$</td>
</tr>
<tr>
<td>4f cosine</td>
<td>$\delta_{ES} = 2.73(0.77)e^{-7}$ $\tau = 13.7(8.7) \mu s$ $\chi^2 = 0.8 (4 \text{ DOF})$</td>
<td>$\delta_{ES} = 1.50(0.70)e^{-7}$ $\tau = 16.3(7.1) \mu s$ $\chi^2 = 0.2 (5 \text{ DOF})$</td>
<td>$\delta_{ES} = 2.15(0.67)e^{-7}$ $\tau = 12.5(6.6) \mu s$ $\chi^2 = 1.2 (6 \text{ DOF})$</td>
</tr>
<tr>
<td>4f sine</td>
<td>$\delta_{ES} = 3.19(0.24)e^{-7}$ $\chi^2 = 0.5 (5 \text{ DOF})$</td>
<td>$\delta_{ES} = 3.05(0.17)e^{-7}$ $\chi^2 = 1.3 (6 \text{ DOF})$</td>
<td>$\delta_{ES} = 2.78(0.17)e^{-7}$ $\chi^2 = 1.4 (7 \text{ DOF})$</td>
</tr>
<tr>
<td>6f cosine</td>
<td>$\delta_{ES} = 3.82(1.49)e^{-7}$ $\tau = -8.9(13.8) \mu s$ $\chi^2 = 1.4 (4 \text{ DOF})$</td>
<td>$\delta_{ES} = 3.68(1.2)e^{-7}$ $\tau = -2.0(11.0) \mu s$ $\chi^2 = 1.0 (5 \text{ DOF})$</td>
<td>$\delta_{ES} = 2.14(0.92)e^{-7}$ $\tau = 1.0(8.8) \mu s$ $\chi^2 = 2.9 (6 \text{ DOF})$</td>
</tr>
<tr>
<td>6f sine</td>
<td>$\delta_{ES} = 3.56(0.29)e^{-7}$ $\chi^2 = 1.85 (4 \text{ DOF})$</td>
<td>$\delta_{ES} = 3.34(0.25)e^{-7}$ $\chi^2 = 0.7 (6 \text{ DOF})$</td>
<td>$\delta_{ES} = 2.64(0.22)e^{-7}$ $\chi^2 = 1.1 (7 \text{ DOF})$</td>
</tr>
<tr>
<td>One-fit</td>
<td>$\delta_{ES} = 3.49(0.12)e^{-7}$ $\tau = 3.1(2.6) \mu s$ $\chi^2 = 1.1 (34 \text{ DOF})$</td>
<td>$\delta_{ES} = 3.10(0.09)e^{-7}$ $\tau = -0.8(2.0) \mu s$ $\chi^2 = 1.1 (40 \text{ DOF})$</td>
<td>$\delta_{ES} = 2.58(0.09)e^{-7}$ $\tau = 6.7(1.9) \mu s$ $\chi^2 = 1.6 (46 \text{ DOF})$</td>
</tr>
</tbody>
</table>

1. δ_{ES} from 2f/4f/6f components consistent in 2σ
2. τ from 2f/4f/6f components consistent in 2σ and close to zero, as expected
3. These features also found on 1N2S pair (the other sensitive diagonal pair)