Charge management for LISA Pathfinder and beyond

Peter Wass
LISA Symposium 2012
22 May Paris
Overview

- Introduction
- Measuring and modelling discharging
- Increasing robustness of discharge process
- LISA Pathfinder charge management hardware
- The future: Technology development for eLISA/NGO
• Sensor
 – 6-degree of freedom position sensing and actuation of free-floating test mass

• Discharging
 – Neutralise test mass by preferential illumination and photoemission from test mass or electrode housing

• Light injection
 – UV fibre optic feed at vertex of sensor

• Applied voltages
 – DC
 – Sensing bias constant at 100kHz
 – Actuation voltages, variable
 AC at 60-270 Hz
Test mass negative charge
Testing discharging

- Test mass positive charge
Testing discharging

- Surfaces are reflective
- Emissivity of surfaces needs to be balanced
Testing discharging

- Voltages can help discharging
Testing discharging

- Voltages can help discharging
- ...not always
Testing discharging

- Discharging tests using a torsion pendulum at University of Trento with different TM/EH combinations
 - In some cases unassisted bipolar discharge was possible
 - In others UV illumination always results in a positive test mass
 - However, discharging is possible by applying selective voltages.
 (Nominal operation for LISA Pathfinder)
 - Worst case requires a reduction in capacitive sensitivity only while discharging: still compatible with Science operations
 - Qualitatively understood by imbalance in photoemissivity
 - Variability of surfaces underestimated
 - Robustness: ratio of yields that will allow discharging
Modelling system

• Two models have been developed to explain/predict discharging results quantitatively
 – EADS Astrium: LPF flight model, ICL: UTN results
 – Ray-tracing of UV light propagation in sensor
 – Assumption of photoelectric yields (from measurements + ray-tracing)
 – Calculation of electric fields at discrete time steps
 – Propagation of electrons between housing and test mass
 – See posters: Hollington and Ziegler

• Models developed independently conclude that pendulum yields are 10:1 (TM:EH)
Increasing robustness

- Extensive period of investigation by EADS Astrium and others
- Many options to increase robustness of discharging studied
 - Understanding surface physics and controlling yield
 - Many measurements on sample surfaces
 - Selective enhancement ‘Hot-spots’
 - Selective suppression
 - Light redirection
Outcomes

- **Robustness for baseline**
 - No bias: +ve: 3.0 –ve: 2.7
 - With voltage assistance: +ve: 3.6 –ve: 9.7
 - Reduced injection: +ve: 3.7 –ve: 15

- **Robustness for redirected light**
 - No bias: +ve: 3.5 –ve: 17
 - With voltage assistance: +ve: 4.2 –ve: 36

- **Surface preparation and handling reduces variation in yield**
 - Plasma cleaning + bakeout in vacuum

- **Final test go/no-go on integrated flight hardware**
Light redirection

- Adapt ISUK tip with mirror
- Beam spread: 12-degrees
- Desired deflection angle: 40-degrees
- Simple mirror results in a lot of light missing mirror, big spot
- Narrow aperture to increase fraction of light on mirror
Light redirection

- Adapt ISUK tip with mirror
- Beam spread: 12-degrees
- Desired deflection angle: 40-degrees
- Narrow aperture to increase fraction of light on mirror
- Prototypes manufactured and tested
- Design being refined for flight model
Angular output

- Output power 11% of undeflected
LISA Pathfinder CMD

• ULU
 – Testing and calibration complete
 – Integrated on spacecraft for OSTT
 – At ICL during hibernation to resolve final qualification issues

• FOH
 – Completed manufacture and test
 – Ready for integration after hibernation
 – NEW: Attenuator prepared to adjust UV light power
LISA Pathfinder CMD
LISA Pathfinder CMD

- UV output level and stability measured in thermal vacuum
- Calibrated for light injected into sensor
- UV attenuation
 - Typical output \(~0.05-1\mu W\)
 - \(3.10^9-7.10^{12}\) photons/s)
 - Target discharge rate \(10^2-10^4\)
 - Large uncertainty in absolute level of photoelectron yield
 - Attenuate light up to 100x by altering FOH junction
eLISA/NGO

- Investigating performance and suitability of new light sources for eLISA/NGO charge management device
- Motivation for changing technology:
 - Mission lifetime longer: years rather than months
 - Can a different technology provide a more robust discharging solution
- New solid-state technologies have become available that can rival lamps in UV emission
 - Blue laser diodes doubled to deep UV wavelengths (~200nm)
 - UV LED 240-255nm
- Currently UV LEDs are most promising
• **UV LED devices have many advantages vs mercury lamps**
 - more compact
 - no high voltage power supply
 - low power consumption
 - faster modulation
 - Long-life

• **Synchronisation with sensor voltages improves robustness**

• **Lower wavelength may also increase robustness**

• **High dynamic-range by high-frequency sigma-delta switching**
Testing UV LEDs

- Previous tests...
- 255nm LED
- DC operation
- Lifetime 1000s mA-hrs

- Relatively broad spectrum
- Not all light may contribute to discharging
- Lower wavelengths may be advantageous
• Three commercially UV LED devices have been selected for detailed testing.

• Component testing underway
 – Spectral output
 – Power consumption
 – Temperature dependencies
 – Thermal vacuum
 – Vibration
 – Radiation
 – Lifetime
Testing UV LEDs

Diagram showing the setup:

- Pulse Generator
- Drive Electronics
- LED Heat Sink
- Temperature Controller
- Optical Fibre
- PMT
- Oscilloscope
- Desktop Computer

Signals:
- PMT signal
- Averaged PMT signal
- Trigger signal
- LED drive voltage

Notes:
- LED drive voltage: 300ns
- PMT signal: ~nW
• Breadboard electronics unit will be used with a sensor mockup to test discharging strategies
 – Synchronisation with AC voltages
 – Investigate surface cleaning/contamination effects
 – Test software model of discharging

• Finally delivered to Trento for discharging test using a representative TM and sensor
Summary

• Understanding of the discharge process has improved
• Strategies have been defined to increase robustness
• Implementation is underway
• LISA pathfinder hardware ready for flight
• New technology for eLISA/NGO looks promising