Galactic binaries with eLISA

Gijs Nelemans
Radboud University Nijmegen
Outline

- Galactic binaries
- Verification binaries
 - The story of HM Cnc
- Expected populations
 - Population synthesis
 - Astrophysical relevance
 - Comparison with observations
- What will happen in the next 10-15 years?
 - Variability surveys
 - GAIA
- Electro-magnetic counterparts
- Conclusions
Galactic binaries: types (you have seen this before...)

- Components compact objects
 - White dwarf
 - Neutron star
 - Black hole
- Detached
 - Double WD, WD+NS, NS+NS
- Interacting (bright!): two types
 - AM CVn stars (WD accretor)
 - Ultra-compact X-ray binaries (NS accretor)
Verification binaries

Galactic binaries
- Verification (talk Kilic)
- Simulated pop.

Littenberg, Petiteau, Yellow Book
RX J0806 = HM Cancri: period really 5.4 min!

- V = 21 mag, integration time < 1 min (resolve 5.4 min)
- Keck spectroscopy
- 3 years in row bad weather!
- Finally done
- Clearly see doppler modulation lines
- Period confirmed
- Distance large (h ↓)

RX J0806 = HM Cancri: period really 5.4 min!

- $V = 21$ mag, integration time < 1 min (resolve 5.4 min)
- Keck spectroscopy
- 3 years in row bad weather!
- Finally done
- Clearly see doppler modulation lines
- Period confirmed

How to get simulate: population synthesis

▪ Recipes for stellar and binary evolution (rapid)
 ▪ Single stars: M, R, L, X, Mc, stellar wind(t) + remnant (supernova)
 ▪ (tides), Mass transfer (stability, common envelope...)

Portegies Zwart & Verbunt, 1996
Nelemans et al. 2001
Toonen et al., submitted

▪ Model for initial distributions
 ▪ M1 (IMF)
 ▪ m/M
 ▪ P or a

▪ “Normalisation”
 (e.g. model for the star formation history)
Expected population

- LISA: ~few 10^4
- eLISA: ~3000
- Problem: nr AM CVn too large (cf obs)
- Different scenarios
 - Cut number
 - Select subclass
 - Different space distribution
- eLISA will tell

Nissanke, Vallisneri et al. 2012
Galactic binaries: astrophysical relevance

- Probes binary evolution
 - Common envelope

- Type Ia Supernovae

- H deficient accretion (and explosions)

- Binary interactions

- Galactic populations/structure
Galactic binaries: astrophysical relevance

- Probes binary evolution
 - Common envelope

- Type Ia Supernovae
 - Same populations

- H deficient accretion (and explosions)

- Binary interactions

- Galactic populations/structure
Galactic binaries: astrophysical relevance

- Probes binary evolution
 - Common envelope

- Type Ia Supernovae
 - Same populations

- H deficient accretion (and explosions)
 - He novae/Ia supernovae

- Binary interactions

- Galactic populations/structure

He nova V445 Pup, Woudt+2010
Galactic binaries: astrophysical relevance

- Probes binary evolution
 - Common envelope

- Type Ia Supernovae
 - Same populations

- H deficient accretion (and explosions)
 - He novae/Ia supernovae

- Binary interactions
 - Mass transfer/tides

- Galactic populations/structure
 - SDSS J0651 12m double WD! Brown et al. 2011
Galactic binaries: astrophysical relevance

- Probes binary evolution
 - Common envelope
- Type Ia Supernovae
 - Same populations
- H deficient accretion (and explosions)
 - He novae/Ia supernovae
- Binary interactions
 - Mass transfer/tides
- Galactic populations/structure
 - Tracers starformation
Stability of mass transfer: danger of explosion
Mass transfer stability

- NS: what happens to super-Eddington mass transfer?
 King, Ritter
- WD: what happens in direct impact case? Tidal coupling?
- Very important for “branching ratios”
- Details of structure donor important

Marsh, Nelemans, Steeghs, 2004
Deloye, Bildsten
H deficient accretion

- **NS:** peculiar X-ray bursts
 - e.g. Cumming, in tZand, Kuulkers

- **WD:**
 - Helium novae
 - When mass transfer rate drops: envelope mass increases → explosion
 - Special type of supernovae
 - Weird SN are found (PTF etc)

V445 Pup, Woudt+2010

Kasliwal et al 2010

Bildsten et al. 2007
Galactic binaries: Galactic structure

- Distribution sources in Galaxy and distance/sky position error

Petiteau, Littenberg
Galactic binaries: Galactic structure

- Distribution sources in Galaxy and distance/sky position error

Petiteau, Littenberg
More and more double WD discovered

- e.g. Marsh 2011, Kilic et al., Brown et al.

More and more observed detached double WD that will merge within a Hubble time

- Toonen et al., submitted
What will happen in next 15 years?

- ALMA (now)
 - Large mm array (ESO+US)
- JWST 2018 (?)
- E-ELT 2022, TMT 2020?
 - 38m telescope
- SKA 2018+
 - Array radio telescopes
Galactic binaries LISA & ELT

LISA binary magnitudes (faint) in optical (V, I) and NIR (K)

ELT Micado, limiting magnitude 29 in I and K
Transient surveys

- **PTF**
 - Many strange transients
 - Several AM CVns found
 - New strategy: short cadence

- **Pan-STARRS**
 - Phase 1 now

- **LSST 2022**
 - Ultimate transient machine
GAIA

ESA mission, launch 2013
Astrometry, photometry
and radial velocities
of ~1 billion stars...

Map structure Galaxy

Many double WD expected
(but needs to be properly modelled)

Marsh & Nelemans in prep
Galactic populations/structure: GAIA
Complementary EM (optical) observations

- Galactic binaries (GAIA!)
- Sky position
- Additional parameters
 - Masses/periods
 - Inclination, distance
 - Period derivative

First investigations of use of joint data

- Not that many strong correlations
- Amplitude-inclination (but only for “face on” systems!)
- Use of other EM data not clear
- Dependence on sky position makes complicated (work in progress)

Shah et al. submitted
Conclusions

‣ Verification binaries
 ‣ Several known, new ones are still found

‣ GW data will be spectacular

‣ Relevance
 ‣ Common envelope, SNIa, H deficient accretion, binary interactions, Galactic structure

‣ But, what will happen in next 15 years?
 ‣ Transient surveys, GAIA, E-ELT, SKA...

‣ Need to determine use of joint EM + GW data