Feasibility of a down-scaled HEMP-Thruster as possible μN-propulsion system for LISA

Andreas Keller¹,², Peter Köhler², Waldemar Gartner³, Franz Georg Hey¹, Marcel Berger¹, Claus Braxmaier⁴, Davar Feili⁵, Dennis Weise¹, and Ulrich Johann¹

¹Astrium GmbH - Satellites, 88039 Friedrichshafen, Germany
²University of Giessen, I. Physikalisches Institut, 35392 Giessen, Germany
³University of Applied Sciences Konstanz, Institute for Optical Systems, 78462 Konstanz, Germany

Introduction

- Candidate propulsion systems for NGO are currently FEEP, Cold Gas and μRIT
- Alternative could be a down-scaled HEMP thruster due to its simplicity
- Experimental feasibility study on down-scaling HEMP thrusters in order to gain a deeper understanding of the influence of design parameters
- Goal is to comply with LISA requirements in terms of thrust level (0.1 - 150 μN) and thrust noise (0.1 μN/√Hz) in LISA measurement band (10⁻⁴ - 1 Hz)
- Thrust Measurement
 - Faraday cups measure the angular dependent ion flux
 - Ceramics and aluminium thruster shows side lobes
 - Steel thruster shows central peak
 - Plume geometry is independent of electric and dependent on magnetic properties of housing

Operation

- Operation Principle
 - Static electric field used to ionise the gas via electron bombardement as well as to accelerate the ions
 - Cupped static magnetic field increases ionisation probability, reduces erosion of the walls and focuses the ion beam
 - Simple system consisting of a high voltage power supply and a gas feed
 - Ions at 60° charge state of ion unknown which is probably created in upstream cusp

- Test facility
 - Length 1 m
 - Diameter 1.6 m
 - Turbo molecular and cryopumps with 25000 l/s throughput in total
 - Array of Faraday Cups and Retarding Potential Analyser can be rotated around thruster

- Test facility
 - Length 1 m
 - Diameter 1.6 m
 - Turbo molecular and cryopumps with 25000 l/s throughput in total
 - Array of Faraday Cups and Retarding Potential Analyser can be rotated around thruster

Thrust Measurement

- Direct thrust measurement with a pendulum to determine thrust and thrust noise and compare with models
- Goal: Sensitivity 0.1 - 1800 μN
- Highly symmetric setup with a reference pendulum for common mode suppression of seismic noise
- Electrostatic actuator enables closed loop operation (constant deflection of pendulum gives zero thrust and changing position and spring tuning (negative spring constant, wider measurement range possible)
- Electric connection via springs (no cables to the balance which may change spring constant)
- Optical readout with picometer heterodyne interferometer

Characterisation

- Finite Element Method (FEM) simulation of static electric field for optimisation
- SmCo ring magnets (higher operation temperature than NdFeB)
- Alumina discharge chamber
- Different housing materials (ceramics, aluminium and steel) which differs in magnetic and electric properties

- FEM simulation of static magnetic field for optimisation
- SmCo ring magnets (higher operation temperature than NdFeB)
- Alumina discharge chamber
- Different housing materials (ceramics, aluminium and steel) which differs in magnetic and electric properties

Design of Thrusters

- Test facility
 - Length 1 m
 - Diameter 1.6 m
 - Turbo molecular and cryopumps with 25000 l/s throughput in total
 - Array of Faraday Cups and Retarding Potential Analyser can be rotated around thruster

- Thrust Measurement
 - Faraday Cups measure the angular dependent ion flux
 - Ceramics and aluminium thruster shows side lobes
 - Steel thruster shows central peak
 - Plume geometry is independent of electric and dependent on magnetic properties of housing

- Ion acceleration voltage
 - Retarding Potential Analyzer measures the angular dependent ion acceleration voltage
 - Charge state of ion unknown which is needed for energy determination
 - Ions at 60° passed full potential difference (probably created in upstream cusp) while ions at 0° passed only a fraction of potential difference (downstream cusp)
 - High acceleration voltages points to a high acceleration efficiencies

Conclusion and Outlook

- Principal feasibility of down-scaled HEMP thruster demonstrated
- Further optimisation necessary in order to comply with LISA requirements
- Systematic thruster test campaign planned with variation of all relevant design parameters
- Thrust balance has to be characterised without thruster operation and calibrated in open loop mode

![Characterisation Diagram](image)

![Design of Thrusters Diagram](image)

![Operation Principle Diagram](image)