APC colloquium

Dear all,

We are very happy to welcome Andrzej M. Szelc (Royal Society University Research Fellow, the University of Manchester) at APC this week.

Andrzej will talk about the "Long- and Short-Baseline Neutrino Oscillation Experiments” (abstract and poster below) in Amphi PGG on Friday, February 7th at 11am.

Vincent and Josquin


Title: Long- and Short-Baseline Neutrino Oscillation Experiments  

Observational signatures of multifield inflation

Slow-roll single-field inflation constitutes the main paradigm of the
Early Universe. But this model suffers from a number of conceptual issues
that naturally lead to the consideration of multifield models of
inflation with curved field space, that have recently been under scrutiny
as realistic realizations of high-energy physics in the Early Universe.
I will show that the non-trivial internal geometry reshuffles
observational predictions from inflation, at the level of the background
(geometrical destabilisation of inflation), of linear

Composite and holographic axions

The idea that low energy fields such as Gravitons or Axions can be 
thought of as composite particles has been entertained since a long 
time. We revisit this idea motivated by the AdS/CFT correspondence. We 
focus in the case of axions and show that hidden sectors coupled to SM 
fields may provide an emergent axionic field that is a composite of the 
hidden fields (instanton density). This is a more general phenomenon 
beyond holographic theories. We study the general properties of such an 
"emergent axion", without a PQ symmetry. The construction goes beyond 

Inflation and Geometry

Inflation, an era of accelerated expansion of the universe prior to the radiation phase, constitutes the paradigm of primordial cosmology. Within this paradigm, the simplest single-field slow-roll models economically explain all curent data. However, the sensitivity of inflation to Planck scale physics, and the fact that ultraviolet completions of inflation invariably involve extra fields coupled to the inflaton, indicate that these models constitute at best a phenomenological description that emerges from a more realistic physical framework.

Dark energy after gravitational wave observations

The observed accelerated expansion of the Universe opens up
the possibility that general relativity is modified on cosmological
scales. While this has motivated the theoretical study of many
alternative theories that will be tested by the next generation of
cosmic large-scale structure surveys, I will show that the recent
observations of gravitational waves by LIGO/Virgo has dramatic
consequences on these theories.

Horndeski and the Sirens

Mergers of compact objects, such as black holes and neutron stars, have been nicknamed standard sirens, by analogy with electromagnetic standard candles, because their waveform directly gives access to their distance. When an electromagnetic counterpart is observed, such sources thus allow us to construct a Hubble diagram, just as supernovae. Recently, the gravitational-wave Hubble diagram has been argued to be a key probe of alternative theories of gravity, such as Horndeski models.


Subscribe to RSS - Théorie