Cosmologie

The Dark Energy Survey Supernova Program and the Australian OzDES survey

The Dark Energy Survey (DES) is using four probes to investigate the dynamics of the expansion of the Universe. The DES Supernova Program (DES-SN) is observing 27 square degrees with a 6-day cadence to obtain a large sample of type Ia supernovae for cosmology. In collaboration with DES, OzDES is using the AAT to obtain redshifts and classifications for objects in the DES fields.

Probing dark energy with cosmic voids

Cosmic voids can supply powerful insights into the nature of dark energy, provided that we have accurate models of their statistical properties. In this talk I will present a new method to identify and predict void density profiles, and show how we can reduce systematic errors when probing the growth rate around voids. This will be crucial for testing non-standard dark energy models with upcoming large survey campaigns.

Possible consequences in Cosmology from the vector-like SU(3) family symmetry model

Extension of the Standard Model (SM) by gauged SU(3) symmetry of families involves new physics at high energy scales. Even elusive from direct experimental probes, such construction can be tested in the combination of Particle physics, Astrophysics and Cosmological signatures. We point out possible Cosmological impact of the new scalars, gauge bosons and vector-like quarks and leptons, including sterile neutrinos, of the vector-like SU(3) family symmetry.  

Robust but enigmatic post-Planck Cosmos

The widely heralded and remarkable   progress in cosmology 
leading to  the emergence of a  'standard cosmological model’ has relied on  
certain key assumptions at various levels.  I review work along  
multiple facets, largely,  from the research program of  my group 
at IUCAA, that have all attempted to adopt  an agnostic approach in 
drawing cosmological inference independent  of such assumptions, 
in the context of  the exquisite   observations  of the Cosmic  Microwave 
Background CMB anisotropy by Planck. I dwell on the enigmatic 

The Milky Way Dark Matter Halo and Direct Dark Matter Detection Results

Dark matter is ubiquitous. However, we do not know what it is. A large number of direct (and indirect detection) experiments, both ongoing and planned, are aimed at unveiling the particle nature of dark matter. All these searches take place within our own Milky Way halo and, thus, the Milky Way dark matter astrophysics is a crucial input. In this talk, I will review some current developments of our knowledge of the phase-space of our own dark matter halo and briefly show how it impacts particle physics dark matter searches.

 

Cosmological reflections of particle symmetry

The basic elements of the modern cosmology - inflation, baryosynthesis
and dark matter imply physics beyond the Standard model of elementary
particles. This physics comes from the extension of the symmetry of
Standard model and can lead to nontrivial cosmological consequences.
Strict particle symmetry priovides the existence of new conserved charges, so
that the lightest particles that possess these charges are stable and
can play the role of dark matter candidates. Particle symmetry breaking

Pages

Subscribe to RSS - Cosmologie