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History of the universe:

Density and temperature decrease with time
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History of the universe:

Interesting things happen!
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The role of neutrinos in cosmology: summary

Early Universe: effects of number of neutrino species (νe , νµ, ντ ....)

Each species: one black-body spectra in the primordial soup
Effect on Nucleosynthesis ⇒ Nν ∼ 3
Effect on Recombination ⇒ Nν ∼ 3

Late Universe: effects of neutrino mass

mν “complicates” late-time expansion and structure formation
No complications seen ⇒ mν < 0.2− 0.1eV

A dark matter candidate that is easy to kill:
mν ∼ 15eV (hot dark matter)

An intriguing unorthodox dark matter candidate:
mν ∼ 5keV (non-thermal relic, warm dark matter)

A super-challenge: detect cosmological neutrinos!
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Early universe: Neutrinos = 3 more black bodies

Same as photons except

Decouple much earlier (T ∼MeV instead of 0.25eV)
[Only weak interactions]

fermions instead of bosons
[Slightly different thermal distribution]

only left-handed ν and right-handed ν̄ reach thermal equilibrium
[Wrong-helicity states not expected to be present.]

Gold mine of questions for exams:
1. Show that Tν = (4/11)1/3Tγ (as long as T � mν)
2. Show that nν = (3/11)nγ ∼ 110cm−3 (each species)
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What can a neutrino do in the early universe

They have only

weak interactions

gravitational interactions.

Both interactions play essential roles.
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νe weak interactions

⇒ initial conditions for nucleosynthesis

neutron-proton ratio vs. temperature:

..

thermal equilibrium via
νen↔ e−p
..

n→ pe−ν̄e

nucleosynthesis (T = 60keV)
(number of neutrons reduced
by decay)
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νe, νµ, ντ gravitational interactions

.

expansion rate (squared) proportional to density

ȧ2

a2
=

8πG

3
(ρmatter + ργ + ρν + ....)

(Friedman)

⇒In radiation epoch expansion rate (squared)
proportional to number of black-body spectra.
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νe, νµ, ντ gravitational interactions

. Expansion rate in Early universe ∼ (Nγ +Nν) (Nγ = 1).

Nν > 3⇒ temperature
drops faster

Less time for neutron
decay ⇒ more helium
than the observed 25%

Recombination faster
⇒ sharper CMB image
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1977: Observed helium abundance ⇒ Nν < 5

2015: 1.8 < Nν < 4.5 (95%CL)
PDG, R.H. Cyburt et al., Astropart. Phys. 23, 313 (2005)
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2015: CMB ⇒ Nν = 3

Planck image of our “last-scattering surface”:

The image is blurred because photons random-walk in the 100,000yr
before recombination. Increasing the expansion rate, reduces the time
for random walking, and makes the image sharper.
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Photon random walk on last-scattering surface

Diffusion distance proportional to geometric mean of photon
mean-free-path and ctwalk ∼ 1/expansion rate.
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Planck damping for ` > 1000 ⇒ Nν < 4
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Nν < 4 at ∼ 3σ

⇒ Any sterile neutrino must not have thermalized.
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Late universe: massive neutrinos become

non-relativistic kT ∼ mνc
2

Neutrino oscillation experiments ⇒ at least one neutrino with
mν > 0.05eV!

mν modifies density
⇒ modified expansion rate
(Friedman eqn.)
⇒ modified
distance-redshift relation
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Limits on neutrino mass

When T ∼ mν :

Energy per neutrino becomes constant (= mν)
⇒modified the expansion rate
⇒modified distance-redshift relationship
⇒ mν < 0.23eV (Planck plus BAO)

Start to contribute to structure formation
Modify predicted inhomogeneities
⇒ mν < 0.12eV (Planck plus Lyα forest)
Palanque-Delabrouille et al [2015]

Question: If it turns out that mν > 0.2eV, how must we modify the
cosmological model to recover agreement? (e.g. time-varying dark
energy).
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Excluded: mν ∼ 15eV: hot dark matter

mν ∼ 15eV gives the right matter density (for 110cm−3) but causes
problems for CMB spectrum and structure formation.

mν modifies expansion rate
before recombination ⇒
CMB spectrum modified

Neutrinos “free stream” at
v = c until T = 15eV ⇒
inhomogeneities on galactic
scales removed.
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Neutrino free-streaming destroys short wavelength

perturbations

Neutrino perturbation destroyed if ct > λ where t is the time
between neutrino decoupling and T = mν .

mν = 15eV ⇒ galaxy-size perturbations destroyed

mν = 4keV ⇒ small-galaxy-size perturbations destroyed
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mν ∼keV: warm dark matter

Matter density too high if nν = 100cm−3 ⇒ must not have been in
thermal equilibrium in early universe.
Possibility: sterile neutrino produced by oscillations

Neutrinos “free stream” at
v = c until T = 4keV ⇒
inhomogeneities on scales
of small galaxies removed.
This is good because few
small galaxies are seen!

⇒ fine-tuning once again:
neutrino mass just big
enough allow for the
existence of galaxies!
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The ultimate challenge: detection of νcosmo

Charged current interactions only on radioactive targets.
Tritium β-decay (T1/2 = 12yr):

3H → 3He e− ν̄e Ee(max) = MHe −MH −mν ∼ 17keV

Capture of cosmological neutrinos on tritium:

ν 3H → 3He e− Ee = MHe −MH + mν

Capture electrons separated from β electrons by 2mν (S. Weinberg)

100g tritium ⇒∼ 10 captures per year ( and ∼ 3× 1024 decays!)
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Tritium β-decay plus capture spectrum

Long et al. arXiv:1405:7654:

Ptolemy project: arXiv:1307.4738
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Neutrinos in cosmology: conclusion

Neutrinos have an essential role in cosmology
Nucleosynthesis
Maybe dark matter....

Cosmological observations consistent with three light
neutrinos.

Direct observation somewhat difficult
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