

International conference on the History of the Neutrino Paris, 07/09/2018

> Thierry Lasserre CEA-Saclay – APC – TUM/MPP

Context: Atmospheric Neutrino Anomaly

Thierry Lasserre – 7/9/2018

CHOOZ (1997-1998)

Thierry Lasserre – 7/9/2018

 CHOOZ reactor, Ardennes (France)
 Underground gallery (300 mwe) found by the Mother of H. de Kerret!

- First large underground monolithic detector for reactor neutrinos.
- 2 cores: 2 x 4.2 GW
- 5 tons of Gd-doped liquid scintillator (degradation of its attenuation over time)

- Palo Verde Generating Station, Arizona, USA 3 reactors: 11.6 GW
- Segmented detector
 (best suited for shallow depth, 32 mwe)
- 11.3 ton, Gd-loaded liquid scintillator
- 820 m baseline

Palo Verde (1998-2000)

Thierry Lasserre – 7/9/2018

Results

Neither Chooz nor Palo-Verde reported oscillation. This null-result eliminated $v_{\mu} \rightarrow v_{e}$ as the primary mechanism for the (Super-)Kamiokande atmospheric deficit

- -

Context: Solar neutrinos till first SNO results (2001)

Japan and Neutrino Oscillations: A perfect match...

Thierry Lasserre – 7/9/2018

First KamLAND Results (2002)

End of 2002

$$\sin(2\theta_{13})^2 < 0.2$$

 $\sin(2\theta_{23})^2 \ge 0.9$

 $\sin(2\theta_{12})^2 \approx 0.8$

θ_{13} made it to the top priority list

By 2002...

Reference	$\frac{\sin \theta}{2}$ if $\sin^2 2\theta_{10} < 0.01$		
SO(10)		11 2013 < 0.0	
Goh, Mohapatra, Ng [40]	0.18	0.13	
Orbifold SO(10)			
Asaka, Buchmüller, Covi [41]	0.1	0.04	
SO(10) + flavor symmetry			
Babu, Pati, Wilczek [42]	$5.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-6}$	
Blazek, Raby, Tobe [43]	0.05	0.01	
Kitano, Mimura [44]	0.22	0.10	
Albright, Barr [45]	0.014	$7.8 \cdot 10^{-4}$	
Maekawa [46]	0.22	0.10	
Ross, Velasco-Sevilla [47]	0.07	0.02	
Chen, Mahanthappa [48]	0.15	0.09	
Raby [49]	0.1	0.04	
SO(10) + texture			
Buchmüller, Wyler [50]	0.1	0.04	
Bando, Obara [51]	0.01 0.06	$4 \cdot 10^{-4} 0.01$	
Flavor symmetries			
Grimus, Lavoura [52, 53]	0	0	
Grimus, Lavoura [52]	0.3	0.3	
Babu, Ma, Valle [54]	0.14	0.08	
Kuchimanchi, Mohapatra [55]	0.08 0.4	0.03 0.5	
Ohlsson, Seidl [56]	0.07 0.14	0.02 0.08	
King, Ross [57]	0.2	0.15	
Textures			
Honda, Kaneko, Tanimoto [58]	0.08 0.20	0.03 0.15	
Lebed, Martin [59]	0.1	0.04	
Bando, Kaneko, Obara, Tanimoto [60]	0.01 0.05	$4 \cdot 10^{-4} \dots 0.01$	
Ibarra, Ross [61]	0.2	0.15	
3×2 see-saw			
Appelquist, Piai, Shrock [62, 63]	0.05	0.01	
Frampton, Glashow, Yanagida [64]	0.1	0.04	
Mei, Xing [65] (normal hierarchy)	0.07	0.02	
(inverted hierarchy)	> 0.006	$> 1.6 \cdot 10^{-4}$	
Anarchy			
de Gouvêa, Murayama [66]	> 0.1	> 0.04	
Renormalization group enhancement			
Mohapatra, Parida, Rajasekaran [67]	0.08 0.1	0.03 0.04	

The difference between theory and practice is larger in practice than the difference between theory and practice in theory.

θ_{13} made it to the top priority list

How to measure θ_{13} ? connect v_e state to the 'isolated' neutrino $\Delta m_{atm}{}^2$

L = 1-2 km, E = MeV
 disappearance channel. @reactor
 θ₁₃ only

or

- L = 100- 1000 km, E = GeV
 - appearance channel
 - θ_{13} , NH/IH, δ_{CP} are entangled

Detector Target

$$\mathbf{P}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = \left[\sum_{i} \mathbf{U}_{\mu i}^{*} e^{-im_{i}^{2} \frac{\mathbf{L}}{2\mathbf{E}}} \mathbf{U}_{ei}\right]^{2}$$

- Complex oscillation formula
- \rightarrow depends on sin²(2θ₁₃) , Δm₃₁², sign(Δm₃₁²), δ
- appearance experiments
- \rightarrow sin²(2 θ_{13}) measurement depends on δ -CP
- matter effects
- \rightarrow High potential for detecting θ_{13} , less for measuring it precisely

Reactor

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \sin^{2} \left(2\theta_{13} \right) \left[\sin \left(1.27 \frac{\Delta m_{atm}^{2} (eV^{2}) L (m)}{E (MeV)} \right) + O\left(\frac{\Delta m_{sol}^{2}}{\Delta m_{atm}^{2}} \right) \right]$$

- Simple oscillation formula
- \rightarrow depends sin²(2 θ_{13}) & Δm_{atm}^{2} , weakly on Δm_{sol}^{2}
- disappearance experiment
- \Rightarrow sin²(2 θ_{13}) measurement independent of δ -CP
- no matter effects
- \rightarrow sin²(2 θ_{13}) measurement independent of mass hierarchy

Some Sensitivity predictions (2002)

Experiment	sin²(2 $ heta_{13}$) 90% с.ட.	Expected start
CHOOZ	<0.14	-
MINOS	<0.06	?
ICARUS	<0.04	2007 ?
OPERA	<0.06	2007 ?
JHF2K (T2K)	<0.006	2009 ?
Kr2Det - Russia	<0.02	?
Kaska - Japan	>0.02	?
XXX — France/EU With a near detector	< 0.025	2006 ?

Table laid down on the CEA-DAPNIA director desk on Oct. 2002

 Δm^2_{atm} = 2.5 10⁻³ eV²

Thierry Lasserre – 7/9/2018

0.1

0.14

0.06

0

Reactor Versus Beam Experiments

Sensitivity to $\sin^2 2\theta_{13}$ at 90% CL

Towards a fair comparison

CP-violation asymmetry 'proportional' to sin θ_{13} . Synergy was finally established and accepted

Thierry Lasserre – 7/9/2018

The - new - concept – no so new, indeed!

Kr2Det (Krasnoyarsk, Russia)

... Put 3 experiments on-track: Daya Baya, Double Chooz, RENO

θ_{13} White Paper - hep-ex/0402041

K. Anderson¹² J.C. Anjos⁷ D. Ayres³ J. Beacom¹⁴ I. Bediaga⁷ A. de Bellefon¹⁵ B.E. Berger⁴ S. Bilenky³⁰ E. Blucher¹² T. Bolton¹⁸ C. Buck²¹ W. Bugg³² J. Busenitz² S. Choubey³⁸ J. Conrad¹³ O. Dadoun¹⁵ F. Dalnoki-Veress²¹ M. Cribier²⁹ André de Gouvêa²⁶ D. Demuth²⁴ M. Decowski⁸ F. Dessages-Ardellier²⁹ Y. Efremenko³² D. Finley¹⁴ J.A. Formaggio⁴⁰ F. von Feilitzsch³³ S.J. Freedman^{4,8} B.K. Fujikawa⁴ M. Garbini⁶ P. Giusti⁶ M. Goger-Neff³³ M. Goodman³ F. Gray⁸ C. Grieb³³ J.J. Grudzinski³ F. Hartmann²¹ C. Hagner³⁹ V.J. Guarino³ C. Hagner³⁹ K. M. Heeger⁵ W. Hofmann²¹ G. Horton-Smith⁹ P. Huber³³ L. Inzhechik¹⁹ J. Jochum³³ H. Jostlein¹⁴ R. Kadel⁵ Y. Kamyshkov³² D. Kaplan¹⁶ P. Kasper¹⁴ H. de Kerret¹⁵ J. Kersten³³ J. Klein³⁴ K.T. Knopfle²¹ V. Kopeikin¹⁹ Yu. Kozlov¹⁹ D. Kryn¹⁵ V. Kuchler¹⁴ M. Kuze³⁶ T. Lachenmaier³³ C. Laughton¹⁴ C. Lendvai³³ J. Li¹⁷ T. Lasserre²⁹ J. Link¹³ M. Longo²³ Y.S. Lu¹⁷ Y.Q. Ma¹⁷ V.P. Martemyanov¹⁹ M. Lindner³³ K.B. Luk^{5,8} R. McKeown⁹ C. Mauger⁹ H. Menghetti⁶ G. Mention¹⁵ J.P. Meyer²⁹ L. Mikaelyan¹⁹ H. Minakata³⁷ D. Naples²⁷ H. Nunokawa¹¹ L. Oberauer³³ M. Obolensky¹⁵ S. Parke¹⁴ S.T. Petcov^{30,38} O.L.G. Peres¹⁰ W. Potzel³³ J. Pilcher¹² R. Plunkett¹⁴ G. Raffelt²² P. Rapidis¹⁴ B. Roe²³ M. Rolinec³³ Y. Sakamoto²⁸ D. Reyna³ G. Sartorelli⁶ S. Schönert²¹ T. Schwetz³³ M. Selvi⁶ R. Shrock³¹ R. Shellard^{6,11} M. Shaevitz¹³ J. Sims¹⁴ V. Sinev¹⁹ N. Stanton¹⁸ R. Sidwell¹⁸ R. Stefanski¹⁴ F. Suekane³⁵ I. Stancu² H. Sugiyama³⁷ S. Sukhotin¹⁹ T. Sumiyoshi³⁷ R. Svoboda²⁰ N. Tamura²⁵ R. Talaga³ J. Thron³ E. von Toerne¹⁸ M. Tanimoto²⁵

D. Vignaud¹⁵ C. Wagner³ Y.F. Wang¹⁷ Z. Wang¹⁷ W. Winter³³ H. Wong¹ E. Yakushev² C.G. Yang¹⁷ O. Yasuda³⁷

January 26, 2004

125 authors40 institutions9 countries

Challenges towards $\sin^2(2\theta_{13}) \approx 0.01$

Best Sensitivity (Chooz): obs/pred = $1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (syst)

Statistics	CHOOZ	DoubleChooz	DayaBay	Deceline
Baseline	1 km	1 km	2 km 🔶	Baseline
Reactor Power	2 x 8 GW	x 1	X 4	optimization
Detector Volume	5 m ³	X 2	x 16	
Data Taking Time	0.5 y	X 10	X 10	
Candidates	10 ³	105	10 ⁶	1.7 m 2 m

Systematics	CHOOZ	DoubleChooz
Reactor Flux	1.9 %	
Detection Efficiency	0.8 %	< 0.2 %
Energy scale		<< 1%
Target Volume	1.5 %	< 0.5 %

Background reduction: accidentals / 100...

Thierry Lasserre - 7/9/2018

New 4-region large detector concept Proposed by Double Chooz (2003)

KASA (Kashiwasaki, Japan)

KASA (Kashiwasaki, Japan)

Project abandoned (2009) and merged with Double Chooz

2002: KASKA Group was formed
2003: Conceptual Design Solving Site Availability Issues
2004: Detector R&D,
2005: Detector R&D
2006: Construction
2007: Construction
2008: Start Data Taking
2009: Initial results
2010:
2011: Final results

2011 Earthquake Major shutdown of Japanese reactors

Diablo Canyon (California, USA)

Project abandoned (2004) and somehow realized in China

Canyon located at 1.8 km from the reactor cores

Detector hall would have been accessible with modest civil engineering...

Braidwood (Illinois, USA)

- 2 x 3.6 GW reactors
- 180m shafts and halls at 450 mwe depth
- Detector:
 - 2 x 65 ton near detectors at 270 / 1510 n
 - Spherical shape
 - No-gadolinium

1800 m

2 x 3.6 GW reactors

65 ton near detectors at 270 m

65 ton far detectors at 1500 m

Angra (Brazil)

θ₁₃ project too big to be supported by Brazil

Led to a new reactor neutrino facility (non-proliferation, Connie, ...)

Thierry Lasserre – 7/9/2018

Site Investigations in France

Site Investigations in France

1 type of nuclear reactor 100 type of cheese

1 type of cheese 100 type of nuclear reactors

Les gendarmes de Tricastin...

First Come back to Chooz (2003)

First Come back to Chooz (2003)

First Double Chooz – spherical- Design - 2003

12 identical – cylindrical – detectors...

Double Chooz

First Double Chooz result in 2011, illustrated in The Big-Bang Theory (CBS)

Near detector data taking in 2014

Started in 2002

Approved in 2004

RENO

A Korean-only effort

Starting with (very) little expertise in 2004

About 30 people!

Some cut&paste...

And a great achievement

Daya Bay: A colossal experiment

2006, a high-level political decision leading to the largest international collaboration in basic science in China and the biggest US-China collaboration.

First Reactor Results (2011-2012)

Reactor experiments provide the most precise value of θ_{13}

> Δm^{2} δm^{2} $sin^{2}\theta_{13}$ $sin^{2}\theta_{12}$ $sin^{2}\theta_{23}$

1.4 %
 2.2 %
 3.8 %
 4.4 %
 ~ 5 %

(1 σ uncertainty)

Reactor Neutrino Flux and Spectra

2011: Reevaluation of the e - v conversion procedure – Flux reevaluated at + 3.5%! (motivation: interpret Double Chooz results, without near detector)

Thierry Lasserre – 7/9/2018

Reactor Antineutrino Anomaly - 2011

A new anomaly (almost) revealed **NEUTRINO2014** XXVI International Conference on Neutrino Physics and Astrophysics

4-6 MeV spectral distorsion still unexplained...

To Hervé de Kerret (1947-2017)

Double-CH $\theta_{13}\theta_{13}$ Z ?

 $θ_{CHOOZ}$? $CHθ_{13}θ_{13}Z-2D$? $CHθ_{13}θ_{13}Z$? Super-CH $θ_{13}θ_{13}Z$? $CHθ_{13}θ_{13}Z-II$

Thank you!

Objet: The Reactor Neutrino Anomaly... Date: 19 décembre 2010 à 17:27:14 UTC+1

I synthesized all the known measurements at short distances (<Chooz)... You will see that the result of this synthesis are really very surprising....

ALL measurements (except 1) are more than 1 sigma from the LM prediction. The average of the effect is 0.943 and the sigma is 0.03 ...

The options available to us:

- Anomaly in the calculation of the new reactor neutrino spectra OR
- Anomaly in the measurement of neutrinos
- Case 1: All the experiments underestimate their errors and/or do a bad count, but strange that it is always in the same direction?
- Case 2: Neutrino oscillation but without spectrum distortion to match Bugey3 & Goesgen spectrum ratios, so only possible with massive neutrinos, >>1 eV (keV?). This solution is ULTRA-hypothetical but I prefer to list it as a possibility for completeness. An effect of 1-0.943=0.057 would result, at high Dm2_41, in sin2(2theta14)=0.114 ... which is so large that it could be incompatible with other neutrino oscillation results (solar, atm, beams, etc.), wouldn't it? Thank you for clarifying this point.

Reactor Antineutrino Anomaly – 12/2010

- The neutrinos are still surprising us....

HLMA: a failed attempt

- Context <2003: KamLAND could not have measured Δm_{sol}^2 if greater than 2 10⁻⁴ eV²
- Study of the HLMA: a new reactor neutrino project relevant only if $\Delta m^2 > 2 \ 10^{-4} \ eV^2$
- By products with a 1 kiloton detector Heilbronn Mine (20 km baseline)
 - constraint on (sin²2θ₁₃)>0.05
 - probe of the v mass hierarchy

