

LPF Operations Heritage for LISA

M Hewitson for the LPF team eLISA Consortium Meeting #1, APC, 22nd October 2012

- Overview of LPF operations
- How this may fit to LISA
- Lessons (to be) learned

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Juesday, October 23, 12

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Operations timing

Tuesday, October 23, 12

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

4

Operations timing

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

• Data handling

- Data analysis
- Documentation

Simulators

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

- -----
- Data is received in packets from SC at MOC
- Converted to engineering values
 - simple calibrations applied
- Pushed into database

- -----
- Data is received in packets from SC at MOC
- Converted to engineering values
 - simple calibrations applied
- Pushed into database
- STOC pulls the data periodically
 - twice per day: high-priority data then consolidated

- ------
- Data is received in packets from SC at MOC
- Converted to engineering values
 - simple calibrations applied
- Pushed into database
- STOC pulls the data periodically
 - twice per day: high-priority data then consolidated
- Data is converted to LTPDA objects and pushed into LTPDA repository

- -----
- Data is received in packets from SC at MOC
- Converted to engineering values
 - simple calibrations applied
- Pushed into database
- STOC pulls the data periodically
 - twice per day: high-priority data then consolidated
- Data is converted to LTPDA objects and pushed into LTPDA repository
- From there data is pushed to external LTPDA repository where external scientists can access it

- ------
- Data is received in packets from SC at MOC
- Converted to engineering values
 - simple calibrations applied
- Pushed into database
- STOC pulls the data periodically
 - twice per day: high-priority data then consolidated
- Data is converted to LTPDA objects and pushed into LTPDA repository
- From there data is pushed to external LTPDA repository where external scientists can access it
- Data is also pushed to the ESA archive

Telemetry

Last and a

- A huge number of 'parameters' are available on-board LPF
 - about 51,000 in all
 - typical science parameter set is about 100 parameters
- These all have names which need to be learned
- They all should have units and descriptions
 - part of the validation process to ensure this, though it's typically the end user (DA team) who finds the problems
- We have a very limited bandwidth for downloading data
 - decide before-hand which sets of parameters to downlink

ICF NAME	PCF DESCR	ICT DISCR2	PCF PD	PCF	PCF	TC PCF P
ACT00001	CAC CacsRateThreshCnm 0	Rate damping theshold before entry to CNM	31947	rs-1	5	2
CT00002	CAC_CacsRateThreshCnm_1	Rate damping theshold before entry to CNM	31948	rs-1	5	2
ACT00003	CAC_CacsRateThreshCnm_2	Rate damping theshold before entry to CNM	31949	rs-1	5	2
ACT20001	CAC_Cps8Flg	Bitfield containing packed versions of CPS HK data	31955		3	14
VCT20002	CAC_CpsThrOntime_0	calculated on time for each thruster	31956	5	5	1
VCT20003	CAC_CpsThrOntime_1	calculated on time for each thruster	31957	5	5	1
VCT20004	CAC_CpsThrOntime_2	calculated on time for each thruster	31958	5	5	1
VCT20005	CAC_CpsThrOntime_3	calculated on time for each thruster	31959	5	5	1
VCT20006	CAC_CpsThrDelay_0	calculated delay time for each thruster	31960	5	5	1
ACT20007	CAC_CpsThrDelay_1	calculated delay time for each thruster	31961	5	5	1
ACT20008	CAC_CpsThrDelay_2	calculated delay time for each thruster	31962	5	2	1
AC120009	CAC_CpsThrDelay_s	calculated delay time for each thruster	31963	5	2	1
ACT20010	CAC_CpsModRatio_0	current value of the modulation ratio	31964	-	2	1
CT20011	CAC_CostDeltaV_0	detail realised so far, in the commanded body frame, in CTCM	31908	ms	2	
CT20012	CAC_COSDEDAV_1	detail realised so far, in the commanded body frame, in CTCM	31909	ms	2	-
CT20014	CAC CosherumOntime 0	accumulated on time for each thouster	31970	in s	-	÷
CT20015	CAC CostscumOntime 1	accumulated on time for each thruster	31972	2	-	1
CT20016	CAC CostarcumOntime 2	accumulated on time for each thouster	31973		-	÷
CT20017	CAC CostarcumOntime 3	accumulated on time for each thouster	31974	2	-	î
CT20024	CAC CosTheAvailStatus	fao indicating availability of the currently active CPS branch	31976		3	4
ACT20028	CAC CosMeAvalStatus	availability status of the main engine	31977		3	4
CT20029	CAC CosMeOnOffStatus	on/off flag of the main engine - used to indicate a main engine fail.	31978		3	4
CT20030	CAC CostEllo MeOnOffStBit	#ACT20029	0		2	1
CT20031	CAC CostFlg MeAvailStBit	#ACT20028	0		2	1
CT20032	CAC Cos8Flg ThrstAv/St8t	#ACT20024	0		2	1
CT20055	CAC CosHkPadField1 0	Padding entry (not used)	31979		3	4
ACT20057	CAC CpsModRatio 1	current value of the modulation ratio	31965		5	1
VCT20058	CAC_CpsModRatio_2	current value of the modulation ratio	31966		5	1
CT20059	CAC_CpsModRatio_3	current value of the modulation ratio	31967		5	1
ACT20061	CAC_CpsCtotCount	Counter of CPS total on-time.	31975	5	5	1
ACT21001	CAC_CsamSubmode	the CSAM submode	32005		4	14
ACT21002	CAC_CsamSecondScanLaw	counter of times scan law has been entered	32007		3	4
ACT21003	CAC_CsamAuthoriseSu	flag to indicate if spin up has been authorised	32008		3	4
ACT21004	CAC_CsamAuthoriseCnm	flag to indicate if transition to CNM has been authorised	32009		3	4
ACT21005	CAC_CsamRdWait	time spent in CSAM rate damping submode	31983	5	5	1
ACT21006	CAC_CsamSiWait	time spent in CSAM scan law sunbode	31984	5	5	1
ACT21007	CAC_CsamEspWait	time spent in CSAM eclipse sun pointing sunbode	31985	\$	5	1
ACT21008	CAC_CsamSuWait	time spent in CSAM spin up submode	31986	8	3	1
AC121009	CAC_CSamRabeRer_0	The reference rate	31987	rs-1	2	1
ACT21010	CAC_CSamRateRef_1	The reference rate	31988	rs-1	2	1
AC121011	CAC_CSamkateker_2	The reference rate	31989	19-1	2	
CT21018	CAC_CompanyErr_1	The rate error	31990	19-1		
CT21014	CAC CoomPateErr 2	The rate error	31007	13-1	-	1
CT21015	CAC ChamRateEst 0	The estimated rate	31993	15-1	÷	î
CT21016	CAC CsamRateEst 1	The estimated rate	11994	15-1	ŝ	î
CT21017	CAC CsamRateEst 2	The estimated rate	31995	15-1	5	1
CT21018	CAC CsamSunAngErr 0	The sun angle error	31996	rad	5	1
CT21019	CAC CsamSunAngErr 1	The sun angle error	31997	rad	5	1
CT21020	CAC CsamSunAngEst 0	The estimated sun sngles	31998	rad	5	1
VCT21021	CAC_CsamSunAngEst_1	The estimated sun sngles	31999	rad	5	1
ACT21022	CAC_CsamSunAngRef_0	The reference sun angles	32000	rad	5	1
ACT21023	CAC_CsamSunAngRef_1	The reference sun angles	32001	rad	5	1
ACT21024	CAC_CsamBodyTorque_0	The calculated body torque	32002	Nm	5	1
ACT21025	CAC_CsamBodyTorque_1	The calculated body torque	32003	Nm	5	1
ACT21026	CAC_CsamBodyTorque_2	The calculated body torque	32004	Nm	5	1
ACT21027	CAC_Csam8Fig	Bitfield containing packed versions of CSAM HK data	32006		3	12
ACT21031	CAC_CsamCruiseFlag	flag to indicate if CSAM is currently in cruise phase	32010		3	4
ACT21032	CAC_CsamHkPadField1_0	Padding entry (not used)	32011		3	4
ACT21033	CAC_CsamHkPadField1_1	Padding entry (not used)	32012		3	4
ACT21034	CAC_CsamBFig_SubmodeBit	#AC121001	0		-	
L121035	CAC_Csamerig_Autroueit	PAC121003	0		-	
121030	CAC Country Autochment	FACT21002	0		-	
LT22001	CAC Combody Torout O	The calculated hody because	32016	Net		2
CT22002	CAC ComBodyTorque_0	The calculated body torque	12017	Nm		1
CT22003	CAC ComBodyTorpus 2	The calculated body torque	32018	Nm	5	1
CT22004	CAC ComCoulseFlag	fag to indicate if CNM is currently in cruise phase	32019		3	4
	The second second	and the state of second second of state business			-	

Data Repository

- The LPF DA repository is a database backend (MySQL) with a web-interface and a MATLAB client interface
- Parameters are stored in discrete chunks of time
- We will generate many objects
 - raw data and analysis products
- Good meta-data for searching is essential

M Hewitson, eLISA Cons (4,0.838654812586061) (5,-0.0682957451436672) ...

- toolbox algorithms
- collection of pipelines
- interface with data repository
- interface with mission database

MATLAB

Tuesday, October 23, 12

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

10

MATLAB

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

10

10

Algorithms

We have many classes of objects Each class of object has algorithms

	Contents	fs	psdconf
	abs	gapfilling	pwelch
	acos	gapfillingoptim	rdivide
	addlistener	qe	real
	angle	get	rebuild
	ao	getBuiltInModels	report
	ao2m	getdof	resample
	asin	gt	rms
	atan	heterodyne	sDomainFit
	atan2	hist	save
	attachm	ifft	scale
	attachmdl	imag	search
	bsubmit	index	select
	cat	interp	setDescription
	char	interpmissing	setDx
	cohere	inv	setDy
	complex	iplot	setFs
	compute	iplotyy	setName
	confint	isprop	setPlotinfo
	conj	isvalid	setProperties
	consolidate	join	setT0
	conv	lcohere	setX
	convert	lcpsd	setXY
	сору	le	setXunits
	corr	len	setY
	COS	lincom	setYunits
	COV	linedetect	setZ
	cpsd	lisovfit	sign
	created	ln	simplifyYunits
	creator	loadobj	sin
	ctranspose	log	smoother
п	A A A	1 10	and the second

SA Consortium Meeting #1, APC, 22nd Oct 2012

	Contents	fs	psdconf
4	abs	gapfilling	pwelch
	acos	gapfillingoptim	rdivide
	addlistener	ge	real
	angle	get	rebuild
	ao	getBuiltInModels	report
	ao2m	getdof	resample
	asin	gt	rms
	atan	heterodyne	sDomainFit
	atan2	hist	save
	attachm	ifft	scale
	attachmdl	imag	search
	bsubmit	index	select
	cat	interp	setDescription
	char	interpmissing	setDx
	cohere	inv	setDy
	complex	iplot	setFs
	compute	iplotyy	setName
	confint	isprop	setPlotinfo
	conj	isvalid	setProperties
	consolidate	join	setT0
	conv	lcohere	setX
	convert	lcpsd	setXY
	сору	le	setXunits
	corr	len	setY
	COS	lincom	setYunits
	COV	linedetect	setZ
	cpsd	lisovfit	sign
	created	ln	simplifyYunits
	creator	loadobj	sin
	ctranspose	log	smoother
	curvefit	log10	sort
	curvefit2	lpsd	spectrogram
	delay	lscov	spikecleaning
	delete	lt	split
	demux	ltfe	sqrt
	det	max	std
	detrend	md5	straightLineFit
	dft	mdc1_cont2act_utn	string
	diag	mdc1_ifo2acc_fd	submit
	diff	mdc1_ifo2acc_fd_utn	SUM
	display	mdc1_ifo2acc_inloop	sumjoin
	dopplercorr	mdc1_ifo2cont_utn	svd
	downsample	mdc1_ifo2control	tØ
	dropduplicates	mdc1_x2acc	table
	dsmean	mean	tan
	dx	median	tfe
	dv	metropolis	timedomainfit

ses of objects t has algorithms

SA Consortium Meeting #1, APC, 22nd Oct 2012

Tuesday, October 23, 12

12

	Server
LTPDA	LTPDA
Toolbox	Repository

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

LTPDA

Repository

LTPDA

Toolbox

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

LTPDA

Toolbox

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

12

LTPDA Toolbox

user classes

utility classes

utility functions

MATLAB

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

scripting layer	
user classes	
utility classes	
utility functions	

MATLAB

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Pipelines

A pipeline represents a set of processing steps which, together, accomplish a particular aim

Pipelines

Listerator

A pipeline represents a set of processing steps which, together, accomplish a particular aim

Pipelines

- We create pipelines designed for particular investigations:
 - quicklook of any investigation
 - conversion to acceleration (inv00001)
 - linear fit of x-axis sys id investigation (inv1001)
 - mcmc parameter estimation of x-axis sys id (inv1001)
 -
- The operational scripts then run these pipelines

%% Define investigation

```
inv00001_start = '2012-06-11 14:03:20';
inv00001_end = '2012-06-11 19:56:40';
```

```
% Create investigation obj.
```

```
Inv00001 = Inv00001_001(inv00001_start,inv00001_end);
```

```
% build the pipeline for these
accPipe = STOCEstimate(Inv00001);
accPipe.get_data = false;
```

% Estimate acceleration

```
% from linear fit
accPipe.dataDirectory = 'linear_data';
linearParams = pest(fullfile(acc.dataDirectory,'fit_linear.mat'));
accPipe.estimate_acc(plist('params',linearParams));
```

```
% from mcmc
accPipe.dataDirectory = 'mcmc_data';
linearParams = pest(fullfile(acc.dataDirectory,'fit_mcmc.mat'));
accPipe.estimate_acc(plist('params',mcmcParams));
```

Interface with Mission Database

- STOC developed a mission database browser for use in operations
- We integrated this into LTPDA:
 - with a GUI
 - with command-line query tools

>> p = MIBrowser.getParamsWithIDs('GST50121')

p =

tmdesc handle

Properties: shortName: '5Hz_FEE_Tm1Pos2Z' description: 'SDM Filtered to 5Hz – IS_FEE_Tm1Pos2Z' id: 'GST50121' units: [1x1 unit]

Hp.													
LPF STOC Database Browser			ar										
Uplink Chain	Downlink Chain	Cen	223										
Show Databar	000			Database Shower									
	PAL		PCF_NAME	PCF_DESCR	PCF_DESCR2 PC	CF_PD		-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i	ad and and and	and as	deal and		
	PAS		ACT00001	CAC_CacsRateThreshCom_0	Rate damping theshol 31	1947		520	NR		N 6	0	
	PCDF		ACT00002	CAC_CacsRateThreshCom_1	Rate damping theshol 3	1948		520	NR	F	N 6	0	
	PCF	- C	ACT00003	CAC_CacsRateThreshCom_2	Rate damping theshol 31	1949		520	NR		N 6		
	R.R.		ACT20001	CAC_CpsBFlg	Bitfield containing pac	1955		3 0	NR	F	N 0		
	PC .		ACT20002	CAC_CpsThrOntime_0	calculated on time for 31	1956	5	510	NR	F	N 3		
	80		ACT20003	CAC_CpsThrOntime_1	calculated on time for 33	1957	5	510	NR		N 3		
	PL AN		ACT20004	CAC_CpsThrOntime_2	calculated on time for 31	1958	8	510	N R	F	N 3		
	PLAN CONTENT		ACT20005	CAC_CpsThrOntime_3	calculated on time for 33	1959	\$	510	NR	F	N 3		
-	PLAN_CONTENT		ACT20006	CAC_CpsThrDelay_0	calculated delay time f 31	1960	1	510	NR		N 3		
	10		ACT20007	CAC_CpsThrDelay_1	calculated delay time f 3	1961	8	510	NR	F	N 3		
	PPC		ACT20008	CAC_CpsThrDelay_2	calculated delay time f 3	1962	\$	510	NR	۶	N 3		
	1999		 ACT20009 	CAC_CpsThrDelay_3	calculated delay time f 31	1963	1	510	NR		N 3	0	
	PRF	1.0	ACT20010	CAC_CpsModRatio_0	current value of the m 32	1964		510	NR	F	N 3		
	PRV		ACT20011	CAC_CpsDeltaV_0	deltaV realised so far, 31	1968	-	510	NR		N 3		
	PSP_REPERENCE		ACT20012	CAC_CpsDeltaV_1	deltaV realised so far, 31	1969		510	NR	F	N 3		
	PSM		ACT20013	CAC_CpsDeltaV_2	delta'/ realised so far 31	1970		510	NR	F	N 3		
	PST		ACT20014	CAC_CpsAccumOntime_0	accumulated on time f 31	1971	5	510	NR	,	N 3	0	
	PSV		ACT20015	CAC_CpsAccumOntime_1	accumulated on time f 3	1972	8	510	N R	F	N 3	0	
	PTV		ACT20016	CAC_CpsAccumOntime_2	accumulated on time f 3	1973	\$	510	NR		N 3		
	PV5		ACT20017	CAC_CpsAccumOntime_3	accumulated on time f 31	1974	1	510	NR		N 3	0	
	SCFF		ACT20024	CAC_CpsThrAvalStatus	fag indicating availabili 3	1976		340	N R	F	N O	0	
	SCOS VERSION		ACT20028	CAC_CpsMeAva/Status	availability status of th 3	1977		340	NR		NO		
	SOF		ACT20029	CAC_CpsMeOnOffStatus	on/off flag of the main 31	1978		340	NR	F	N 0	0	
			ACT20030	CAC CoullEig MeCoOfficiat	#ACT20029 0			2 1 6	5.0	6	NO	0	

System Simulators

- Various simulators exist:
 - SVF (Software Verification Facility)
 - runs on-board software with software models of system
 - close to real-time
 - STOC Simulator
 - runs 'real' Payload Operation Requests (PORs) on an industry provided Simulink model of LPF
 - fairly detailed physical models, fast, complex
 - ESOC Simulator
 - runs on-board software, interfaces with main control system
 - realistic telemetry output
 - low-fidelity physical models, but functionally correct
 - Linear Statespace Models
 - integrated with DA software
 - simplified physical models compared to STOC Simulator
 - full 3D modular model of LPF
 - very fast and flexible

How we use the simulators

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Tuesday, October 23, 12

17

How we use the simulators

STOC Simulator

- validate PORs and investigations
- generate data for STOC Simulations
 - contains more complexity than our DA statespace models
 - it is an 'unknown' system which we need to characterise

How we use the simulators

STOC Simulator

- validate PORs and investigations
- generate data for STOC Simulations
 - contains more complexity than our DA statespace models
 - it is an 'unknown' system which we need to characterise
- DA Statespace Models
 - rapid prototyping of investigations
 - proof of concept in designing experiments
 - run time-domain simulations to produce test data sets
 - learning about system behaviour
 - what happens if I inject a signal here?
 - template generation for system identification
 - full 3D LPF model has >500 tunable parameters
 - fit particular parameter sets to outputs of particular experiments

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

18

18

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Experiments and investigations

- We break the mission into experiment phases
 - noise hunting, system identification, environmental characterisation, etc
 - each experiment phase is broken down into investigations
- The mission time-line is built up from these elements
- The time-line can be adjusted to
 - rearrange planned investigations
 - include new investigations
 - needs to be done a few days in advance

Process of defining experiments

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Tuesday, October 23, 12

20

Process of defining experiments

- Two main strands of definition:
 - hardware providers developed targeted strategies
 - OMS characterisation experiments, Radiation monitor activities, ...
 - system level characterisation coming from DA team
 - determine system parameters for physical model
 - gains, stiffnesses, cross-couplings, etc

Process of defining experiments

- Two main strands of definition:
 - hardware providers developed targeted strategies
 - OMS characterisation experiments, Radiation monitor activities, ...
 - system level characterisation coming from DA team
 - determine system parameters for physical model
 - gains, stiffnesses, cross-couplings, etc
- The scheme has been to write a technical note which:
 - describes possible experiments
 - discusses the aim of those experiments
 - details how they might be analysed and what the expected results are
 - defines the telemetry needed

Process of defining experiments (II)

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Tuesday, October 23, 12

21

Process of defining experiments (II)

- STOC takes these proposals and defines investigations
 - validation involves:
 - confirming the experiment is feasible
 - defining telemetry sets
 - simulating and testing

Process of defining experiments (II)

- STOC takes these proposals and defines investigations
 - validation involves:
 - confirming the experiment is feasible
 - defining telemetry sets
 - simulating and testing
- These are then used to develop the mission time-line with the overall aim of:
 - achieving the desired level of free-fall
 - developing a detailed physical model of the system

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Tuesday, October 23, 12

ng #1, APC, 22nd Oct 2012

- system identification needed to:
 - tune the instrument for best performance
 - understand new behaviour
 - subtract noise contributions

- system identification needed to:
 - tune the instrument for best performance
 - understand new behaviour
 - subtract noise contributions
- characterisation of glitches, noise nonstationarity, data quality
 - input to subsequent astrophysical data analysis

- system identification needed to:
 - tune the instrument for best performance
 - understand new behaviour
 - subtract noise contributions
- characterisation of glitches, noise nonstationarity, data quality
 - input to subsequent astrophysical data analysis
- characterisation of environment
 - temperature and magnetic effects
 - may affect data quality, may require tuning the system to minimise couplings

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Tuesday, October 23, 12

C, 22Na OCI 2012

- Commissioning of LISA
 - full LPF mission is a commissioning/characterisation exercise

- Commissioning of LISA
 - full LPF mission is a commissioning/characterisation exercise
- Continuous maintenance and characterisation
 - system identification to maintain peak performance
 - characterisation of glitches, noise non-stationarity, data quality
 - input to subsequent astrophysical data analysis

- Commissioning of LISA
 - full LPF mission is a commissioning/characterisation exercise
- Continuous maintenance and characterisation
 - system identification to maintain peak performance
 - characterisation of glitches, noise non-stationarity, data quality
 - input to subsequent astrophysical data analysis
- LISA activities will need similar tools and experiments
 - are we missing experiments on LPF which may provide useful input to LISA development?

- Commissioning of LISA
 - full LPF mission is a commissioning/characterisation exercise
- Continuous maintenance and characterisation
 - system identification to maintain peak performance
 - characterisation of glitches, noise non-stationarity, data quality
 - input to subsequent astrophysical data analysis
- LISA activities will need similar tools and experiments
 - are we missing experiments on LPF which may provide useful input to LISA development?
- LPF provides real data under a real operational scenario for a 'similar' instrument

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

- Data handling
 - learn from the short-comings of the LPF system and improve from LISA
 - parameter naming, time stamping, data delivery system, etc

- Data handling
 - learn from the short-comings of the LPF system and improve from LISA
 - parameter naming, time stamping, data delivery system, etc
- Data analysis (commissioning)
 - take concepts and algorithms from LTPDA and design a tool suitable for LISA
 - maybe LTPDA would do, maybe we want to move away from MATLAB
 - but keep: history tracking, object oriented, testing, dynamic documentation, etc

- Data handling
 - learn from the short-comings of the LPF system and improve from LISA
 - parameter naming, time stamping, data delivery system, etc
- Data analysis (commissioning)
 - take concepts and algorithms from LTPDA and design a tool suitable for LISA
 - maybe LTPDA would do, maybe we want to move away from MATLAB
 - but keep: history tracking, object oriented, testing, dynamic documentation, etc
- Documentation
 - tools to do 'live' documenting (logging) of DA activity are few and far between
 - wikis, local wordprocessor/tex files, other e-labbooks exists
 - all are poor or slow
 - write requirements and start thinking about a design for a tool which fits

- Data handling
 - learn from the short-comings of the LPF system and improve from LISA
 - parameter naming, time stamping, data delivery system, etc
- Data analysis (commissioning)
 - take concepts and algorithms from LTPDA and design a tool suitable for LISA
 - maybe LTPDA would do, maybe we want to move away from MATLAB
 - but keep: history tracking, object oriented, testing, dynamic documentation, etc
- Documentation
 - tools to do 'live' documenting (logging) of DA activity are few and far between
 - wikis, local wordprocessor/tex files, other e-labbooks exists
 - all are poor or slow
 - write requirements and start thinking about a design for a tool which fits
- Simulators
 - the LPF simulators have proved invaluable
 - modelling, learning, simulating, parameter identification, etc
 - take modular concepts of the LPF statespace simulator and design a LISA system simulator
 - bottom up
 - capture behaviour, not all details

Experiments

- Test/develop characterisation experiments for LISA
 - base these on those designed for LPF
 - we need a system simulator for this
- Other experiments will be needed
 - what are these?
 - can they be somehow tested on LPF?
- These experiments can help drive/develop requirements on the instrument(s)

What else do we get from LPF?

- operations experience
 - both at ESA and in LPF/LISA science community
 - try to keep the science team from LPF in the LISA project
 - ensure we write detailed reports on LPF observed behaviour (planned, but hard)
- first set of data indicating how this type of instrument will behave
 - hardware characteristics (glitches, noise levels, failure modes, long-term performance)
 - system behaviour (instabilities, tuning performance, robustness)
 - long-term behaviour
- Look for similar behaviour when developing and integrating LISA

M Hewitson, eLISA Consortium Meeting #1, APC, 22nd Oct 2012

Tuesday, October 23, 12

27

- Instrument user manuals are not enough!
- Have close interaction of Ops/DA team with hardware providers
 - do this early in the development to avoid 'surprises' when preparing operations
 - development of DA was probably too late in LPF
 - it was often too late to impose hardware changes
 - lots of work-arounds and compromises

- Instrument user manuals are not enough!
- Have close interaction of Ops/DA team with hardware providers
 - do this early in the development to avoid 'surprises' when preparing operations
 - development of DA was probably too late in LPF
 - it was often too late to impose hardware changes
 - lots of work-arounds and compromises
- Include Ops/DA team in hardware test campaigns
 - provides invaluable experience to the Ops/DA team
 - how to operate instruments, experience which is not typically captured in user manuals
 - gives valuable feedback to hardware providers
 - do this early to avoid the 'we don't have time to worry about that now' problem

- Instrument user manuals are not enough!
- Have close interaction of Ops/DA team with hardware providers
 - do this early in the development to avoid 'surprises' when preparing operations
 - development of DA was probably too late in LPF
 - it was often too late to impose hardware changes
 - lots of work-arounds and compromises
- Include Ops/DA team in hardware test campaigns
 - provides invaluable experience to the Ops/DA team
 - how to operate instruments, experience which is not typically captured in user manuals
 - gives valuable feedback to hardware providers
 - do this early to avoid the 'we don't have time to worry about that now' problem
- People leave: it's important to keep a body of knowledge alive from hardware construction/testing through to Ops
 - integrating a wider range of people in the development process can help with this

Tuesday, October 23, 12