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Pierre left us in April 2017
He was fully active until the last moment
He was a member of the LISA collaboration

Several articles in which he had collaborated appeared even
after his death
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Ahstract
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THE STANDARD THEORY

» The Standard Theory has been enormously successful

» It contains 17 + - - - arbitrary parameters (masses and coupling
constants) and they have all been determined experimentally

» This number is irreducible
Any relation of the form X\ = f(g) will not be respected by
renormalisation

» The Standard Theory is the absolute totalitarian system.
Whatever is not forbidden, it is compulsory
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THE STANDARD THEORY

Our confidence in this theory is fully justified by its successes in
predicting new phenomena and its impressive agreement with
experiment:

>

The discovery of weak neutral currents (CERN 1973)

The discovery of charmed particles (SLAC-Brookhaven
1974-1976)

The discovery of QCD and asymptotic freedom (SLAC-- - -
1973---+)

The discovery of the gauge bosons (CERN 1983)
The discovery of b and t flavours (FermiLab, LEP)

The discovery of the BEH boson (CERN 2012)



THE STANDARD THEORY

In addition, it shows an impressive agreement with experiment in a
very large number of detailed measurements.
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o 2 v T decays (N3LO)
S(Q ) & DIS jets (NLO)
3 0 Heavy Quarkonia (NLO)
031 \ o e'e jets & shapes (res. NNLO)
® e.w. precision fits (N3LO)
v pp—> jets (NLO)
v pp —> tt (NNLO)

02}

01}




Standard Model Production Cross Section Measurements
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August 2017 CMS Preliminarv

B 7 TeV CMS measurement L= 5.010 )

B & TeV CMS measurement (L= 19.5 16}

B 13 TeV CMS measurement (L= 36.9 167

— Theory prediction
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Quantity Value Standard Model Pull

My [GeV)] L1876 £ 0.0021 511880 & 0.0020 02
T, [GeV] 24952 + 0.0023 2.4943 = 0.0008 0.4
T(had) [GeV] 17444 £ 0.0020 1.7420 = 0.0008
(i) [MeV] 100015 S0L.66+ 0.05
T(£HE) [MeV] 83,084 + 0,086 3,095 + 0,010
i lub] 41,541 £ 0.087 41484 + (L008 L5
B 20,804 £ 0.050 20,73 + 0010 L4
R, 20,785 4 0.033 20,73 + 0,010 L6
B 20764 + 0,045 20,779 + 0.010 0.
R, 0.21620 4 0.00066  0.21579 = 0.00003 0.8
Re 0.1721 = 0.0030 0.17221 + 0.00008 00
Al 0.0145 = 0.0025 0.01622 = 0.00009 07
Al 0.0169 % 0.0013 05
AL 00188+ 0.0017 L5
Al 0.0092 £ 0.0016 0.1031 4 0.0003 24
Al 0.0707 + 0.0035 0.0736 -+ 0.0002 08
Al 0.0976+ 0.0114 0.1032 = 0.0003 05
& 0.2324 £ 0.0012 0.23152 £ 0.00005 07
0.23185 £ 0.00035 0.
0.23105  0.00087 05
A 0.15138 £ 0.00216 0.1470  0.0004 20
0.1544 £ 0.0060 L2
0.1498 £ 0.0049 0.6
A, 0,142+ 0.015 0.3
A 0.156 £ 0.015 01
0.1430 + 0.0043 ot
Ay 0.023 % 0.020 0.0347 0.6
A 0,670 0.027 06678 = 0.0002 0.1
A 0,695 £ 0.091 0.0356 0.4
December 1, 2017 0936




Quantity Value Standard Model Pull
my [GeV] 173.34 4 0.81 173.76 + 0.76 -0.5
My [GeV] 80.387 % 0.016 80.361 = 0.006 1.6

80.376 % 0.033 0.4
Ty [GeV] 2.046 4 0.049 2.089 & 0.001 -0.9

2.195 4 0.083 1.3
My [GeV] 125.09 0.24 125.11+0.24 0.0
paw —0.03 +0.20 —0.02 +0.02 0.0
prz ~0.27 4 0.31 0.00 + 0.03 ~0.9
g —0.040 =+ 0.015 —0.0397 = 0.0002 0.0
oy —0.507 4 0.014 —0.5064 0.0
Qw (e) —0.0403 £ 0.0053 —0.0473 £ 0.0003 13
Qw (p) 0.064 £ 0.012 0.0708+0.0003  —0.6
Quw (Cs) —72.62 £ 0.43 —73.25 £0.02 L5
Qu (T1) —116.4+ 3.6 —116.91 + 0.02 0.1
5% (eDIS) 0.2299 +0.0043 0.23129+0.00005  —0.3
7 |[fs] 200.88 = 0.35 289.85 = 2.12 0.4
3(gu—2—2) (4511.18+£0.78) x 1079  (4507.89+£0.08) x 107% 4.2
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+ Latest global EW fit

+ Agreement with SM
continues as measurements

improve
+ Tension between A'.g, A(LEP
& SLD), A,(SLD) & A
remains...
Gfitter 1803.01853



(MeV)

2500

2000

1500

1000

500

pP pPpPpP o I

—_
-~
™ oo
—o B mesons offset by —4000 MeV
-—
.
Lol
= T hl
?'i —
EXN
ocfo




THE STANDARD THEORY

» Most of these successes constitute in fact a triumph of
renormalised perturbation theory



THE STANDARD THEORY

» Most of these successes constitute in fact a triumph of
renormalised perturbation theory

» For the first time we check weak interactions at the level of
radiative corrections



THE STANDARD THEORY

» Most of these successes constitute in fact a triumph of
renormalised perturbation theory

» For the first time we check weak interactions at the level of
radiative corrections

» The Standard Theory has become a
high precision theory
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The ST is a renormalisable
Quantum Field Theory

Weak coupling Gray area Strong coupling
=l -
g<<l1 - ' g=1
Perturbation m Strong coupling
expansions expansions

In a large part of present energies QCD is in the gray area !



Perturbation theory has been remarkably
reliable outside the region of strong
interactions

* Do we understand why?

* Dyson’'s argument:
Ay~ a®(2n - D!

Perturbation theory breaks down when A, ~ Aq41

n+1~o!

For QED n>>1; For QCD ???

For some reason the validity of (improved) perturbation expansion
seems to cover most of the gray area
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Given this impressive success...
What does Beyond mean?

Or, What is wrong with the Standard Theory??
|. General questions

[I. Specific points



High precision measurements

Anomalous magnetic moment of the muon

g-2: An uncomfortably lonely i >
saarch for a Crack in the SM

Long-standing discrepancy with the SM

:Q. 5
IE\QD
E% BNL ¢ x4 | Fermilab goal FNAL exp’tin
5= commissioning
ul 15
Q‘ e 28a phase
SM Theory __2 1 + i + H i
Evaluations o . .
: 1 - i x2 Thy estimate
5 v
T

1 L I L I 1
2004 2006 200E 2010 2002 2014 2006 2018 2020

YEAR

a, is now measured to 540 ppb; Goal is 140 ppb



High precision measurements

Arduous computation of ever more precise SM predictio;

" ! " ! New lattice computation for HLBL term
L u u = physical pion mass and large lattice
k2 » Statistical precision x2 improvement

« Systematics in progress

[
QED  Weak HVP HLbL

Known Knawn Data Models/Lattice

Blum etal, 1705.01067,

Contribution Value 10" Uncertainty x10' 1610.04603
QED 11 658 471.895 0.008
Electroweak Corrections 154 0.1
HVP (LO) [7] 692.3 1.2
HVP (LO) [8] 694.9 43
HV'P (NLO) -0.84 0.06
VP (NNLO) 1.24 0.01
HLbL 10.5 2.6 aHLbL 5. 35(1 35) x 10— 10
Total SM prediction [7] 11 659 181.5 4.9
Total SM prediction [8] 11 659 184.1 5.0
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target =~ 1.6 ik




Heavy flavour decays

LEPTON FLAVOUR UNIVERSALITY VIOLATION?

R(D*)
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Heavy flavour decays

Flavour changing neutral currents

B} = K*pu* i~ results

B ivevool G

uot

< ns- - 14 ATLAS =8 Te'v.zu.ar'n"_
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[ T haser rmEsy 4
r -_— 1.2 theory MY oy JG
I 4 K
o ]
[ LHCh 0§ ) E
o M fm ABSE. 04 E
- N | | 0.2] -—!—
L] 5 Ui ] 15 o L i L L L
& 1GeV3c] 2 H o
o [GeV)
* Several observables appear it . . .
different than SM « LHChbdata © ATLAS data
: Belledata  © CMS data
¢ In particular P has .
. p_ﬁ i 5 05 [0 SM from DHMY
significant discrepancy ; | B AS7R
+  Global fits show large ok 1
disagreement t |
-0
| ! —.‘H
[} 5 1t 15
q* [GeVie]
F. Dettori Search for new physics in b — s£f decays Moriond EW 2018
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Heavy flavour decays

Summary of B anomalies W lverool i
Are we there yet?

1. Low b — spp branching fractions
2. Discrepancies in angular observables of BY — K p p~

3. Signs of lepton non-universality in: B = KTp " u~ and B < K*utp™

*  All seems to be related to a change in the Cq coefficient
(or maybe Cy and Cio, but V-A)

*  (Global fits start to exhibit several standard deviations of discrepancy
* ¢f interference explanation seems not justified
» Additional discrepancies in tree-level B — D*/fu decays

+  Many NP explanations: Z’, leptoguarks, low mass resonances etc



Dark matter

Large mass range for DM candidates

zeV aeV feV peV neV ueV meV eV

/‘Txﬁ

keV MeV GeV TeV

—
Sterile Neutrino ‘WIMPs

PeV  30M

Uhtralight Dark Matter

* bosonic DM produced during
inflation or high temp phase
transition

» DM acts as oscillating classical
field

Hidden Sector DM Black Holes

* WIMPs: act through SM forces

» Hidden Sector: act through new
force, very weakly coupled to SM

* Thermal contact in early universe

Beyond WIMPS: novel, low-cost, search techniques

US Cosmic Visions Report, 1707.04591 =



Neutrino masses and oscillations

Neutrino Physics ﬁ_
] |

Fundamental Questions addressed by Diverse Neutrino Program

* What is the origin of neutrino mass?

* How are the neutrino masses ordered?
= Oscillation experiments

* What is the absolute neutrino mass scale?
* Beta-decay spectrum
« Cosmic surveys

» Do neutrinos and anti-neutrinos oscillate differently?
= Oscillation experiments

* Are there additional neutrino types and interactions?
= Oscillation experiments
= Cosmic surveys

* Are neutrinos their own anti-particles? - _ fy- 7Y
= Neutrinoless double-beta decay r;;: B g‘ 5 g% | g s



Neutrino masses and oscillations

My conclusion :

e A data-driven subject in which theorists have not played the
major role.

e Substantial improvement in precision could be expected during
the coming years.

e The significance of such improvements is not easy to judge.
e So far no real illumination came from leptons to be combined

with the quark sector for a more complete theory of flavour

The trouble is that | do not see how this could change!
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More general questions

v

Why three families

v

Why U(1) x SU(2) x SU(3)

v

Why so many mass scales

v

Hierarchy and fine tuning

Unification

v

v

Quantum gravity

v

Many others you can add
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Conclusions

v

No coherent picture emerges

» We were expecting new physics to be around the corner.....
But we see no corner

v

The easy answer: We need more data

v

Two problems: (i) We do not know what kind of data
(ii) They will not come for quite a long time

v

A rather frustrating problem!
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My Conclusions

» The Future of Particle Physics will undoubtedly be bright,
but....

» | will not learn the answer

» We have a very successful Standard Theory and
we will leave the problem of its completion to the younger
generation.....

» But now, they must do it without Pierre



