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1 Description of the radiation field, the coherence matrix

1.1 The linear polarization basis
A coherent fully polarised radiation field is represented by a 2 dimensional complex vector field orthog-
onals to the propagation direction. In the linear polarization basis , the radiation field is projected on
two linear polarization basis |x >, |y >, or equivalently |� >, |⊥ >1:

�E =

�
Ex

Ey

�
, (1)

which depends on 3 physical parameters, plus one irrelevant phase. In general a radiation field is an
incoherent superposition of waves with different polarisations, it is then more convenient to describe
the radiation field statistically through its hermitian “coherence” matrix2

CL
3:

CL =

�
< |Ex|2 > < Ex E∗

y
>

< E∗
x
Ey > < |Ey|2 >

�
. (2)

1
The “�, ⊥” notation means that the x, y directions are taken parallel and perpendicular to some direction of the

observing device, for intance a polarimeter direction.
2
For the coherence matrix and the stokes parameters, see for instance (Born and Wolf, 1980)

3
The index L stands for a basis of Linear polarization
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Because of the mean value that enter its definition, the coherence matrix depends on 4 independent
physical parameters, which reduce to 3 for a fully polarised radiation. These four physical parameters
can be chosen to be the Stokes parameters:

CL =
1

2
(I 1l +QσQ + U σ1 + V σV ). (3)

where matrices σi are the usual Pauli matrices :

σL

Q
= σ3 =

�
1 0
0 −1

�
, σL

U
= σ1 =

�
0 1
1 0

�
, σL

V
= σ2 =

�
0 −i
i 0

�
. (4)

The reason why we choose to index them in this way should be obvious from relations (3) and (5).
The Stokes parameters:

I =< |Ex|2 + |Ey|2 >, Q =< |Ex|2 − |Ey|2 >,U = 2 < �(Ex E
∗
y
) >, V = −2 < �(Ex E

∗
y
) >

can be deduced from the coherence matrix as:

I = TrCL, Q = Tr(σL

Q
CL), U = Tr(σL

U
CL), V = Tr(σL

V
CL) (5)

and satisfy the inequality:
I2 ≥ Q2 + U2 + V 2,

which expresses the fact that the polarised energy cannot exceed the total energy. It becomes an
equality for a fully polarised radiation, thus reducing the number of physical parameters to 3, as
expected.

1.2 The helicity basis
It is also useful to work in the helicity basis which is a basis of circlar polarization:

|+ >
|− >

=
1√
2

�
1 i
i 1

�
|� >
|⊥ >

or |� >
|⊥ >

=
1√
2

�
1 −i
−i 1

�
|+ >
|− >

or equivalently

E+
E−

=
1√
2

�
1 −i
−i 1

�
E�
E⊥

or E�
E⊥

=
1√
2

�
1 i
i 1

�
E+

E−
.

One can write the correlation matrix in this basis CH
4:

CH

�
< |E+|2 > < E+ E∗

− >
< E− E∗

+ > < |E−|2 >

�
=

1

2
(1l− iσ1)CL(1l + iσ1) =

1

2
(CL − i[σ1,CL] + σ1CLσ1) .

=
1

2
(I1l + V σ3 + Uσ1 −Qσ2),

où l’on a utilisé les équations 27.
L’équation 5 reste valable dans la base d’hélicité:

I = TrCH , Q = Tr(σH

Q
CH), U = Tr(σH

U
CH), V = Tr(σH

V
CH),

where (the index S stands for the Stokes parameters Q, U, and V ):

σH

S
=

1√
2
(1l− iσ1)σ

L

S

1√
2
(1l + iσ1), namely: σH

Q
= −σ2, σ

H

U
= σ1, σ

H

V
= σ3.

4
The index H stands for Helicity basis
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2 Description of the instrument

2.1 The Jones matrix
An instrument transforms linearly the 2 dimensional vector representing the incoming radiation field
�Ein into the outgoing field �Eout, also a 2 dimensional complex vector. Therefore, the action of the
instrument can in general be represented by a 2 × 2 complex Jones matrix J (Jones, 1941a; Jones,
1941b; Jones, 1942):

�
Eout

�
Eout

⊥

�
= JL

�
Ein

�
Ein

⊥

�
=

�
J� � J�⊥
J⊥� J⊥⊥

��
Ein

�
Ein

⊥

�
.

The Jones matrix depends on 7 parameters plus one irrelevant phase.
If the instrument can be split into successive parts, through which the radiation travels before it

reaches the bolometer, then the total J matrix is the product of the J matrices of the parts. For
instance if the radiation goes first through the telescope, then through a first horn, then through a
polariser and finally through a second horn, the total J matrix of the instrument is:

J = JHorn2 JPolariser JHorn1 JTelescope .

If the Stokes parameters of the incoming radiation are Iin, Qin, Uin and Vin, a bolometer behind the
instrument receives an intensity:

Ibolo = aI Iin + aQ Qin + aU Uin + aV Vin, (6)

where
aI = (|J� �|2 + |J�⊥|2 + |J⊥⊥|2 + |J⊥�|2)/2
aQ = (|J� �|2 − |J�⊥|2 − |J⊥⊥|2 + |J⊥�|2)/2
aU = �(J� � J

∗
�⊥ + J⊥⊥ J∗

⊥�)

aV = �(J� � J
∗
�⊥ − J⊥⊥ J∗

⊥�)

. (7)

Amplitudes ai satisfy the inequality:

aI
2 ≥ aQ

2 + aU
2 + aV

2,

which again expresses the fact that the instrument does not induce a polarised energy larger than the
total energy.
The Jones matrix in terms of Pauli matrices: It is sometimes convenient to write the Jones
matrix in terms of the Pauli matrices:
In the linear polarization basis:

JL = a1l +�b.�σ, (8)

where a can be taken real and �b is a complex vector. To keep track of the reality properties of the
Jones matrix, which are related to the circular polarisation induced by the instrument.

�b =




b1
ib2
b3



 . (9)

Then the Jones matrix writes:
JL =

�
a+ b3 b1 + b2
b1 − b2 a− b3

�
.

Any non zero imaginary part in bi means that the Jones matrix generates circular polarization from
linear polarisation or no polarization.
In the helicity basis:

JH = a+ b1σ1 − b3σ2 + ib2σ3 =

�
a+ ib2 b1 + ib3
b1 − ib3 a− ib2

�
.
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2.2 Note on the reference systems
Of course, the Jones matrix depends on the “in” and “out” reference systems which are in general
different. For instance the “in” reference system is some conventional “Co-Cross” reference system
orthogonal to the direction of propagation of the incoming radiation, whereas the “out” reference sys-
tem lies in the focal plane5 “Co(�), (Cross(⊥))” directions being parallel (orthogonal) to the presumed
direction of the polarizer .

Transformation of the coherence matrix by the instrument: By going through the instrument,
the coherence matrix Cin of radiation is transformed to:

Cout = J Cin J
† (10)

2.3 The Mueller matrix
The Jones matrix describes how the components of the radiation field transform as they go through
the instrument. Using equation (10), one can construct the “Mueller matrix” M (Mueller, 1948) which
tells us how the Stokes parameters transform:

Sout =





Iout
Qout

Uout

Vout



 = MSin = M





Iin
Qin

Uin

Vin



 (11)

From equations (5) and (10), it is easy to compute the elements of the Mueller matrix from the Jones
matrix:

MS S� =
1

2
tr
�
σS J σS� J

†
�
, (12)

where the σS matrices have been choosen in the the same basis (linear or helicity) as the Jones
matrix.Then the mueller matrix is the same in both basis, because the unitary matrix 1√

2
(1l − iσ1)

disappears from the trace. It is easily seen that matrix MS S� is real, as it should, the Stokes parameters
being real parameters, and that the Mueller matrix is symmetric when the Jones matrix J is hermitian.
Expressions of the general Mueller matrix in terms of the elements of the Jones matrix and in terms of
its development on the Pauli matrices (equations (8) and (9)) are given in appendix B. The amplitudes
aS which appear in Eq. (6) are in fact the elements of the first row of the Mueller matrix:

aI = M I I , aQ = M I Q, aU = M I U , aV = M I V , (13)

as can be verified by comparing equation (7) with the general expression (28) of the Mueller matrix
in appendix B.

When the radiation successively goes through several instruments 1, 2 ,3 ..., the total Jones matrix
is the product of the corresponding Jones matrices: J = ...J3 J2 J1, The coherence matrix of the
outgoing field will be

Cout = J Cin J
† = ...J3 J2 J1 Cin J

†
1 J

†
2 J

†
3... (14)

and by repeated use of equations (10), (11) and (12), one can see that the total Mueller matrix is also
the product of the Mueller matrices of the successive instruments:

M = ...M3 M2 M1. (15)

3 The various types of instruments
We shall go through the 7 parameters of the Jones (Mueller) matrices and their relations to various
possibles behaviours of the instrument. One of the prominent characteristics of an instrument is its
ability to circularly polarise an initially unpolarised or linearly polarised radiation. As the circular
polarisation results from a phase shift between the time oscillations of the two components of the
radiation field, instruments creating circular polarisation have a complex Jones matrix.

5
By Focal plane, we mean the tangent plane to the wave front where it reaches the feed horn.
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3.1 Instruments generating no circular polarisation
They have a real Jones Matrix that depend on 4 parameters and can all be constructed as products
of matrices describing the following elementary actions (see the proof in Appendix C):

An imperfect polariser: with the copolar (�) direction at an angle α from the X axis (3 pa-
rameter):

JL,polariser =

�
cosα − sinα
sinα cosα

��
τ� 0
0 τ⊥

��
cosα sinα
− sinα cosα

�

= 1
2

�
τ� + τ⊥ + (τ� − τ⊥) cos 2α (τ� − τ⊥) sin 2α

(τ� − τ⊥) sin 2α τ� + τ⊥ − (τ� − τ⊥) cos 2α

�

= 1
2

�
(τ� + τ⊥)1l + (τ� − τ⊥)(cos 2ασ3 + sin 2ασ1)

�

(16)

τ� and τ⊥ are the transmission coefficients in the � and ⊥ directions, they verify 1 ≥ τ� ≥ τ⊥ ≥ 0 and
hopefully τ� � τ⊥. In the helicity basis, it becomes:

JH,polariser =
1

2

�
(τ� + τ⊥)1l + (τ� − τ⊥)(− cos 2ασ2 + sin 2ασ1)

�

= 1
2

�
τ� + τ⊥ (τ� − τ⊥)(ie2iα)

(τ� − τ⊥)(−ie−2iα) τ� + τ⊥

�
.

The corresponding Mueller matrix is:

Mpolariser =





K k cos 2α k sin 2α 0
k cos 2α K cos2 2α+ q sin2 2α (K − q) sin 2α cos 2α 0
k sin 2α (K − q) sin 2α cos 2α K sin2 2α+ q cos2 2α 0

0 0 0 q



 (17)

where K = (τ2� + τ2⊥)/2, k = (τ2� − τ2⊥)/2, and q = τ� τ⊥, with 1 ≥ K ≥ k ≥ 0 and K2 = k2 + q2.

A rotation of the polarisation: by an angle β (or of the axis by an angle −β) is described
by the following Jones matrix (one parameter):

JL,rotation = e−i β σ2 =

�
cosβ − sinβ
sinβ cosβ

�
, JH,rotation = ei β σ3 =

�
eiβ 0
0 e−iβ

�
, (18)

and the corresponding Mueller matrix is: \label{eq:} \bmat \\ \\ \\ \emat

M rotation =





1 0 0 0
0 cos 2β − sin 2β 0
0 sin 2β cos 2β 0
0 0 0 1



 (19)

A mirror transformation: (no free parameter): ,\quad \MB = \bmat \emat

JL =

�
1 0
0 −1

�
, JH =

�
0 i
−i 0

�
, M =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



 .

To summarise: the most general instrument inducing no circular polarisation can be viewed as
an imperfect polarimeter in some direction α followed by a device rotating, and possibly mirroring,
the polarisation. If the instrument is just in front of the measuring bolometer, only sensitive to the
intensity, this last polarisation rotation and/or reflection is irrelevant and the signal in the bolometer
is governed by the first row of the Mueller matrix in Eq. (17):

Ibolo = K Iin + k cos 2αQin + k sin 2αUin (20)
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3.2 Instruments that induce circular polarisation
They are linked to the three remaining parameters, and can be classified according to the type of po-
larisation they turn into circular polarisation. The Jones matrix are complex and the Mueller matrix
have non zero non diagonal elements in the fourth row and column (linked to the V Stokes parameter).

From Q polarisation: (along one of the reference axis): The Jones matrix is

JL = eiµσ1 =

�
cosµ i sinµ
i sinµ cosµ

�
= JH

with the Mueller matrix:

M =





1 0 0 0
0 cos 2µ 0 − sin 2µ
0 0 1 0
0 sin 2µ 0 cos 2µ





From U polarisation: (at 45◦ from the reference axis): The Jones matrix is

JL = eiνσ3 =

�
cos ν + i sin ν 0

0 cos ν − i sin ν

�
, JH = e−iµσ2 =

�
cosµ sinµ
− sinµ cosµ

�

with the Mueller matrix:

M =





1 0 0 0
0 1 0 0
0 0 cos 2ν sin 2ν
0 0 − sin 2ν cos 2ν





From no polarisation: The Jones matrix is

JL = eλσ2 =

�
coshλ −i sinhλ
i sinhλ coshλ

�
, JH = e−λσ3 =

�
e−λ 0
0 e+λ

�

with the Mueller matrix:

M =





cosh 2λ 0 0 sinh 2λ
0 1 0 0
0 0 1 0

sinh 2λ 0 0 cosh 2λ



 .

4 Polarised beams as Jones or Mueller Matrices
For any feed, one has to know how an incoming radiation in the direction �n is mapped in the focal
plane at the position of the feed. This corresponds to a Jones matrix for each direction in the sky. To
define the Jones matrix, one has to give oneself reference frames, both for the incoming radiation, in
the plane tangent to the celestial sphere in the direction �n, and in the focal plane6, for the radiation
entering the feed. There are usual conventions for this, some of which are described in Ludwig (Ludwig,
1973) (see figure 1 for the Ludwig III convention). In the particular case of antennas, one only needs
to know the Co and Cross amplitudes, corresponding to the exact direction of the antenna, in other
word the first line of the Jones matrix in the Co-Cross reference frame of the antenna. But, for any
change in the direction of the antenna, one needs the full Jones matrix, or equivalently, the Co and
Cross amplitudes for two different directions of the antenna. In addition, for bolometric observations,
the antenna is replaced by a polarimeter which is never perfect and will leak some energy in the
orthogonal direction to the bolometer. Therefore, the radiation pattern in the orthogonal direction is
also required, although a rough knowledge will often be sufficient.

6
See footnote 5, page 4
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4.1 Getting the Jones matrix from orthogonal antenna patterns
An antenna in the direction �eX , placed at some point in the focal plane and illuminating the telescope
produces a radiation field propagating in the direction �n in the sky:

�EX(�n) = EX (AX

� (�n)�eX� (�n) +AX

⊥ (�n)�eX⊥ (�n)).

where EX is the field amplitude produced by the antenna, while �eX� (�n) and �eX⊥ (�n) are conventional
basis vectors forming a right handed orthogonal reference frame with the direction of propagation
�n. The only property of these vectors that we use, is that they turn by an angle α around �n if the
antenna, and therefore �eX , is rotated by this angle α in the focal plane. The Ludwig III convention is
an example satisfying this constraint. If the antenna is rotated by an angle of π/2 toward the direction
Y , the basis vector in the far field reference frame are rotated in the same way:

�eY� (�n) = �eX⊥ (�n), and �eY⊥(�n) = −�eX� (�n)

the field produced in the same direction �n in the sky becomes:

�EY (�n) = EY (AY

� (�n)�e
Y

� (�n) +AY

⊥(�n)�e
Y

⊥(�n)) = EY (AY

� (�n)�e
X

⊥ (�n)−AY

⊥(�n)�e
X

� (�n))

In other words an emitter in the focal plane illuminating the telescope with a field (EX , EY ) , produces
in the direction �n a radiation field (E�(�n), E⊥(�n)) given by:

�
E�(�n)E⊥(�n)

�
=

�
AX

� (�n)−AY

⊥(�n)A
X

⊥ (�n)AY

� (�n)
� �

EXEY
�
,

where the (X, Y ) reference frame in the focal plane is defined by the two orthogonal directions of the
antenna.

The principle of reciprocity tells us that an incoming radiation field (E�(�n), E⊥(�n)) in the direction
�n, produces in the focal plane a field

�
EX(�n)EY (�n)

�
=

�
AX

� (�n)AX

⊥ (�n)−AY

⊥(�n)A
Y

� (�n)
� �

E�(�n)E⊥(�n)
�

(21)

Therefore, by illuminating the telescope in the reverse way with two orthogonal dipoles in the focal
plane, and studying their antenna patterns, one is able to evaluate the full polarised lobe as a Jones
matrix depending on the direction of an incoming radiation.

J telescope(�n) =
�
AX

� (�n)AX

⊥ (�n)−AY

⊥(�n)A
Y

� (�n)
�

(22)

Note that with the matrix in Eq. (21), one is able to compute the Jones matrix in any other reference
frame (X �, Y �), rotated by an angle α from (X,Y ) in the focal plane, provided the Co-Cross reference
frame chosen for the incoming radiation also rotates by the same angle α:

J
�
telescope

(�n) =

�
AX

�

� (�n) AX
�

⊥ (�n)

−AY
�

⊥ (�n) AY
�

� (�n)

�

=

�
cosα sinα
− sinα cosα

��
AX

� (�n) AX

⊥ (�n)

−AX

� (�n) AY

� (�n)

��
cosα − sinα
sinα cosα

�
=

1
2 ((A

X
� + A

Y
� ) + (AX

� − A
Y
⊥) cos 2α + (AX

⊥ − A
Y
� ) sin 2α)

(23)

The first and second lines of this matrix give the Co and Cross amplitudes relative to the X � and Y �

directions respectively.
The action of a polarimeter placed behind, at an angle α from the X axis, is obtained as the

product JpolarimeterJBtelescope, where Jpolarimeter is given by the expression (16). If, as argued by
Fosalba (Fosalba, 2000), the copolar amplitude depend only very weakly on the direction of the dipole
in the focal plane, and the crosspolar amplitudes are small, then the Jones matrix is approximately:

J telescope(�n) =
�
A�(�n)�(�n)− η(�n)A�(�n)

�
(24)
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When working with bolometers, Mueller matrices are more illuminating, as they give directly the
transformation of the Stokes parameters. The Mueller matrix associated to the Jones matrix (24) is,
to first order in � and η and assuming that the induced circular polarisation is negligible (The Jones
matrix is nearly real):

M telescope(�n) =
�
|A|20A (�− η)00|A|2A (�+ η)0A (�− η)−A (�+ η)|A|20000|A|2

�
(�n) (25)

Multiplying by the Mueller matrix of the polarimeter (Eq. ??), one finds the coefficients:

aI = K |A|2
aQ = k(|A|2 cos 2α− (�+ η) sin 2α)
aU = k(|A|2 sin 2α+ (�+ η) cos 2α) +KA(�− η)

(26)

where K = (τ2� + τ2⊥)/2 and k = (τ2� − τ2⊥)/2

If η and � are zero, then one is back to equation (20), up to a factor |A|2 which is the transmission of
the telescope. The whole instrument behaves as a polarimeter in the direction α in the focal plane. If
η and � are small but not zero, the angle α is changed to α+(�+η)/2 and aU gets a small contribution,
proportional to KA(�− η).

Still, the result of Fosalba (Fosalba, 2000) should be checked for all feed positions and is probably a
bad approximation for far side-lobes. Therefore we think that the polarised beams as complete Jones
matrices (four complex amplitudes up to a phase) should be evaluated for each feed, thus allowing to
play with the polariser directions and to choose the optimal ones.
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Appendices

A Quelques relations sur les matrices de Pauli

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 −i
i 0

�
σ3 =

�
1 0
0 −1

�
.

(�a · �σ)(�b · �σ) = (�a ·�b) + i (�a×�b) · �σ
(�a · �σ)(�b · �σ)(�a · �σ) = 2(�a ·�b)(�a · �σ)− |�a|2(�b · �σ)
(�a · �σ)(�b · �σ)(�c · �σ) = (�a ·�b)(�c · �σ)− (�a · �c)(�b · �σ) + (b · �c)(�a · �σ) + i(�a · (�b× �c)) (27)

�a× (�b× �c) = (�a ·�b)�c− (�a · �c)�b

B The matrix elements of a general Mueller matrix
Using Eq. (12), it easy to compute the Mueller matrix in term of the matrix elements of the Jones
matrix:

M = 1
2



|J� �|2 + |J�⊥|2 + |J⊥�|2 + |J⊥⊥|2 |J� �|2 − |J�⊥|2 + |J⊥�|2 − |J⊥⊥|2 2�(J� � J∗
�⊥ + J⊥⊥ J∗

⊥�) 2�(J� � J∗
�⊥ − J⊥⊥ J∗

⊥�)

|J� �|2 + |J�⊥|2 − |J⊥�|2 − |J⊥⊥|2 |J� �|2 − |J�⊥|2 − |J⊥�|2 + |J⊥⊥|2 2�(J� � J∗
�⊥ − J⊥⊥ J∗

⊥�) 2�(J� � J∗
�⊥ + J⊥⊥ J∗

⊥�)

2�(J� � J∗
⊥� + J⊥⊥ J∗

�⊥) 2�(J� � J∗
⊥� − J⊥⊥ J∗

�⊥) 2�(J� � J∗
⊥⊥ + J�⊥ J∗

⊥�) 2�(J� � J∗
⊥⊥ − J�⊥ J∗

⊥�)

−2�(J� � J∗
⊥� − J⊥⊥ J∗

�⊥) −2�(J� � J∗
⊥� + J⊥⊥ J∗

�⊥) −2�(J� � J∗
⊥⊥ + J�⊥ J∗

⊥�) 2�(J� � J∗
⊥⊥ − J�⊥ J∗

⊥�)





(28)

It can also be useful to write the Mueller matrix in terms of the parameters a and�b of the development
of the Jones matrix on the Pauli matrices (Eq. (8) and (9)) :

M =





|a|2 + |bQ|2 + |bU |2 + |bV |2 2�(a b∗Q + bU b
∗
V ) 2�(a b∗U − b

∗
V bQ) 2�(a b∗V − bQ b

∗
U )

2�(a b∗Q − bU b
∗
V ) |a|2 + |bQ|2 − |bU |2 − |bV |2 2�(−a b

∗
V + bQ b

∗
U ) 2�(a∗ bU + bQ b

∗
V )

2�(a b∗U + bV b
∗
Q) 2�(a b∗V + bQ b

∗
U ) |a|2 − |bQ|2 + |bU |2 − |bV |2 2�(a b∗Q + bU b

∗
V )

2�(a b∗V + bQ b
∗
U ) 2�(a b∗U + bQ b

∗
V ) 2�(a∗ bQ + bU b

∗
V ) |a|2 − |bQ|2 − |bU |2 + |bV |2





(29)

C The most general real Jones matrix
A 2x2 real Jones matrix can always be written as:

J = O1 J O2 where J =

�
j1 0
0 J2

�
with j1 ≥ j2 ≥ 0, (30)

and matrices Oi are orthogonal.

Orthogonal 2 × 2 matrices can all be written as a rotation matrix
�

cosβ − sinβ
sinβ cosβ

�
or as the

product of a rotation matrix by a reflexion \bmat\emat
�

1 0
0 −1

�
. This proves the statements of

section 3.1.

Proof: Being a symmetric and positive semi-definite matrix J J
T can always be diagonalised as:

J J
T = O1 J 2

O
−1
1 (31)

One can look for a matrix O2 such that

J = O1 J O2
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If J as a non zero determinant, O2 can be obtained as:

O2 = J −1
O

−1
1 J

It is easy to see that O2 is orthogonal using Eq. (31) and the fact the inverse of an orthogonal matrix
is obtained by transposition:

O2 O
T

2 = J −1
O

−1
1 J J

T
O1 J −1 = 1l

which proves Eq. (30).
If the Jones matrix as a zero determinant, as is the case for a perfect polariser, it means that there

is a direction in the incoming polarisation space, indexed by a unit vector |n > such that J |n >= 0.
In the orthogonal direction |m > the action of J is J |m >= j1|m� >, where |m� > is a unit vector
defining a direction of the outgoing polarisation space (and |n� > the orthogonal one). Then J can
be written as:\emat\bmat \emat,

J =

�
< i�|m� > < i�|n� >
< j�|m� > < j�|n� >

��
j1 0
0 0

��
< m|i > < m|j >
< n|i > < n|j >

�
,

which is Eq. (30) ( |i >, |j > and |i� >, |j� > are orthonormal basis vectors in the incoming and
outgoing polarisation spaces).
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Figure 1: Co and Cross basis vector in the Ludwig III convention

11


	Description of the radiation field, the coherence matrix
	The linear polarization basis
	The helicity basis 

	Description of the instrument
	The Jones matrix
	Note on the reference systems
	The Mueller matrix

	The various types of instruments
	Instruments generating no circular polarisation
	Instruments that induce circular polarisation

	Polarised beams as Jones or Mueller Matrices
	Getting the Jones matrix from orthogonal antenna patterns

	Quelques relations sur les matrices de Pauli
	The matrix elements of a general Mueller matrix
	The most general real Jones matrix

