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The context

To study the diffusion of a population of CRs after their
escape from the acceleration site

We consider a situation where:
- the transport of CRs is regulated by the scattering off Alfven waves

- a CR of energy E resonates with waves of wave number k = 1/r.(E)

+ quasi linear theory 0B/Bo<<1 ambient magnetic field

Energy density W(k) of EJalS:T N AU
Alfven waves 8T 87 W(k)dInk

- perpendicular diffusion coefficient is suppressed
the problem is one dimensional

Bohm diffusion coefficient

- 4 ¢ ’I‘L(E) - DB(E)

Parallel diffusion coefficient: D= o= Wk Wik




The context

Growth of turbulence by CR:
(resonant streaming instability)
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Skilling 1970

waves reach an
equilibrium over a
time scale much

shorter than the CR :
transport time slow crossing time: constant in

advection term can space and time
be neglected
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Waves grow very quickly: large level
of turbulence. CRs are locked to
waves and only an unimportant
amount of diffusion occurs.

Level of turbulence determined by
equilibrium between external injection
and damping:

WO=DB/D=Q/ I-damp

Pcre<t'2 exp(-z?/Dism t) CR-locked case

Test-particle (TP) case




Ptuskin et al. 2008
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Stationarity : — (Fgrowth — I\dafmp)VV + ':;’ turbulence
slow crossing Kolmogprov
time damping
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self-similar solution (with a variable x=z/t3/%) which describes the non-
stationary evolution of the cloud of relativistic particles confined in the
magnetic field flux tube

Compared to the ordinary diffusion with constant D, the considered non-linear
transport is characterized by a relatively slow expansion of the particle
distribution around the source



Malkov et al., 2013
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Method: they solve the two coupled equations and derive an analytic
approximated solution

Conclusions: solution depends on two main parameters, Wo and II.

IT: field-line-integrated
CR pressure

- The case Il < 1 is equivalent to the TP case.
- The case II > 1 growth of waves is important




The meaning of II

M= YA $ep

Por :/ dz Pcr
0

Dpg

Consider the initial setup of the problem: CRs are localized in a
small region of size Az. If the CR pressure within Az is Pcr,0 then

Dcr = Pcro Az
growth time:  (Va/Wo0Pcr/0z)" = WoAz/VPcr,0

To have a significant growth of waves due to CR streaming,
the growth time must be CR shorter than the time it
takes the CR cloud to spread due to diffusion

AZ2/D ~ Az?Wo/ D5

The initial diffusion coefficient is equal to Ds/Wo.

Such condition can be rewritten as I1 > 1



Malkov et al., 2013
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Self-similar solution
for the CR pressure
for different values of
the II parameter.
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One major caveat with Malkov’s approach:
IT can be in some cases too large and limit the applicability



ISM phases

We consider 2 different ideal phases:
Warm neutral and Warm ionized medium

[Jean+(09]
ohase properties Warm neutral Warm ionized
WNM WIM
Hydrogen density 0.2-0.5 0.2-0.5
temperature (K) 6000-10000 8000
ionization fraction 0.007-0.05 ONGEOR®
magnetic field (uG) 5 5




OUR WORK
To quantify the range of applicability of Malkov+13 we explicitly estimate I1

[I(E;n, Rese, @) pl-a,—1/2p—2 assumptions_ Rese = 20pC, a0 = 2.2
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There is an upper limit to I1: Dni<Ds
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Shaded blue:

Not allowed region:
IT > Ilmax
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I =l Hatched red: Maximum II (Dn.<Dg)
limit of the quasi-linear
calculations of Malkov+13.

Shaded purple:
Test Particle solution, no
need to apply Malkov+13
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— Numerical procedure —

Initial conditions:

« Pcr(t=0,z>Resc)=Pcr pack and Pcr(t=0,z<Resc) prescribed imposing that 10% of
SN energy into CRs

. D(t=0,z)=Disy=10°® [E/ 10GeV]’> cm*/s

Boundary conditions:
- CR and wave fluxes vanish at z=0

Solving scheme:
- Explicit finite differences (conditions for accuracy and stability required)

Computing performances:

- Computation time on a standard workstation few minutes/hours depending
on the particle energy and spatial resolution




OUR WORK
Turbulence damping processes considered

Non-linear Landau damping (I'n..): occurs due to the energy exchange between
waves and particles. High-frequency waves are damped by the presence of low-
frequency waves and the presence of thermal particles.

[Kulsrud 1978; Volk & Cesarsky 1982; Felice & Kulsrud 2001]

Farmer & Goldreich (rFg): wave damping by background MHD turbulence.

MHD turbulence act as a damping mechanism for CR-generated waves
Va

I'rc = 77—
VLyuDTL [Yan & Lazarian 2002; Farmer & Goldreich 2004]

Kolmogorov ([l'kot): Non-linear Kolmogorov-type wave interaction. Energy cascade
of Alfvenic waves to large wave numbers is anisotropic: the main part of energy
density in this turbulence is concentrated perpendicular to the local B.

[Ptuskin & Zirakashvili 2003, 2005]

lon-neutral collisions (I'n): momentum-exchanging collisions between ions and neutral
particles

[Kulsrud & Pierce’69; Zweibel & Shull’82]




lon-neutral damping OUR WORK

collision frequenc

‘ T 0.4
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104 K
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Frequent collisions reduce the Alfven speed to a value determined by the
total mass density instead of the ionized mass density
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Some preliminary results

Nava, Gabici, Marcowith,
Morlino & Ptuskin 14,
in preparation

- 2 ISM phases: WIM and WNM
- 3 Energies: 20 GeV, 1 TeV, 20 TeV
- 3 times: 2 kyr, 10 kyr, 50 kyr

OUR WORK
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CR Energy = 1 TeV CR Energy = 1 TeV
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CR Energy = 20 GeV CR Energy = 20 GeV
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Summary

2 Self-consistent solutions of D and Pcr in the quasi-linear limit
? Streaming instability as source of turbulence

2 Different collisional and collisionless damping

2 Two ISM phases: WNM & WIM

2 Deviation from the test particle solution at Ecr<1 TeV

2 Strong self-confinement of CRs of GeV CRs, even at late times

Further developments:

2 CR spectra and gamma-ray spectra: constraints from gamma-ray

observations, gamma-ray production from clouds



