האוניברסיטה העברית בירושלים מכון רקח לפיסיקה The Racah Institute of Physics

Propagation of cosmic rays in the vicinity of their acceleration sites

Nava, Gabici, Marcowith, Morlino, Ptuskin, in preparation

Lara Nava

Marie Curie Fellow The Hebrew University of Jerusalem

The context

To study the diffusion of a population of CRs after their escape from the acceleration site

We consider a situation where:

- the transport of CRs is regulated by the scattering off Alfven waves
- a CR of energy E resonates with waves of wave number $k = 1/r_L(E)$

 perpendicular diffusion coefficient is suppressed the problem is one dimensional

Parallel diffusion coefficient:

Bohm diffusion coefficie
$$D = \frac{4 \ c \ r_L(E)}{3\pi \ W(k_r)} = \underbrace{\begin{array}{c} D_B(E) \\ W(k_r) \end{array}}_{W(k_r)}$$

nt

The context

• the main source of Alfvenic turbulence is the streaming of CRs

Growth of turbulence by CR: (resonant streaming instability)

$$\Gamma_{growth} = -V_A \frac{\partial P_{CR}}{\partial z} \frac{1}{W}$$

- turbulence damping mechanisms Γ_{damp}

Coupled equations to be solved

$$\frac{\partial P_{CR}}{\partial t} + V_A \frac{\partial P_{CR}}{\partial z} = \frac{\partial}{\partial z} \left(\frac{D_B}{W} \frac{\partial P_{CR}}{\partial z} \right)$$
$$\frac{\partial W}{\partial t} + V_A \frac{\partial W}{\partial z} = (\Gamma_{growth} - \Gamma_{damp})W + Q$$

Skilling 1970

Level of turbulence determined by equilibrium between external injection and damping:

 $W_0 = D_B / D = Q / \Gamma_{damp}$

 $P_{CR} \propto t^{-1/2} \exp(-z^2/D_{ISM} t)$

<u>Test-particle (TP) case</u>

Waves grow very quickly: large level of turbulence. CRs are locked to waves and only an unimportant amount of diffusion occurs.

<u>CR-locked case</u>

Ptuskin et al. 2008

self-similar solution (with a variable $x=z/t^{3/2}$) which describes the nonstationary evolution of the cloud of relativistic particles confined in the magnetic field flux tube

Compared to the ordinary diffusion with constant *D*, the considered non-linear transport is characterized by a relatively slow expansion of the particle distribution around the source

Malkov et al., 2013

<u>Method</u>: they solve the two coupled equations and derive an analytic approximated solution

<u>Conclusions</u>: solution depends on two main parameters, W_0 and Π .

П: field-line-integrated CR pressure

$$\Pi = \frac{V_A}{D_B} \int_0^\infty P_{CR} \, dz$$

- The case Π < 1 is equivalent to the TP case.
- The case Π > 1 growth of waves is important

The meaning of $\boldsymbol{\Pi}$

$$\Pi = \frac{V_A}{D_B} \Phi_{CR}$$

$$\Phi_{CR} = \int_0^\infty \mathrm{d}z \ P_{CR}$$

Consider the initial setup of the problem: CRs are localized in a small region of size Δz . If the CR pressure within Δz is $P_{CR,0}$ then

 $\Phi_{CR} = P_{CR,0} \Delta z$

growth time: $(V_A/W_0 \partial P_{CR}/\partial z)^{-1} \approx W_0 \Delta z/V_A P_{CR,0}$

To have a significant growth of waves due to CR streaming, the growth time must be CR shorter than the time it takes the CR cloud to spread due to diffusion

 $\Delta z^2/D \approx \Delta z^2 W_0/D_B$

The initial diffusion coefficient is equal to D_B/W_0 .

Such condition can be rewritten as $\Pi > 1$

Malkov et al., 2013

Self-similar solution for the CR pressure for different values of the П parameter.

Zone 1: Core	Zone 2: intermediate	Zone 3: exponential cutoff
z < z D _{NL}	Z ₁	Z>Z
P _{CR} >>	Ρ	P _{CR}

One major caveat with Malkov's approach: Π can be in some cases too large and limit the applicability

ISM phases

We consider 2 different ideal phases: <u>Warm neutral</u> and <u>Warm ionized</u> medium [Jean+09]

phase properties	Warm neutral WNM	Warm ionized WIM
Hydrogen density	0.2-0.5	0.2-0.5
temperature (K)	6000-10000	8000
ionization fraction	0.007-0.05	0.6-0.9
magnetic field (µG)	5	5

OUR WORK

To quantify the range of applicability of Malkov+13 we explicitly estimate Π

 $\Pi(E; n, R_{esc}, \alpha) \propto E^{1-\alpha} n^{-1/2} R_{esc}^{-2}$

assumptions

$$R_{esc} = 20 \,\mathrm{pc}, \ \alpha = 2.2$$

There is an upper limit to Π : $D_{NL} < D_B$

 $\Pi_{max} = \Pi_{max}(E; D_{ISM}, B)$

assumptions

$$D_{ISM} = 10^{28} \left(\frac{E}{10 \, GeV}\right)^{0.5} cm^2 s^{-1}$$

Shaded blue: Not allowed region: $\Pi > \Pi_{max}$

<u>Hatched red</u>: Maximum Π ($D_{NL} < D_B$) limit of the quasi-linear calculations of Malkov+13.

<u>Shaded purple</u>: Test Particle solution, no need to apply Malkov+13

OUR WORK

$$\frac{\partial P_{CR}}{\partial t} + V_A \frac{\partial P_{CR}}{\partial z} = \frac{\partial}{\partial z} \left(\frac{D_B}{W} \frac{\partial P_{CR}}{\partial z} \right)$$
$$\frac{\partial W}{\partial t} + V_A \frac{\partial W}{\partial z} = (\Gamma_{growth} - \Gamma_{damp})W + Q$$

Numerical procedure –

Initial conditions:

- P_{CR}(t=0,z>R_{esc})=P_{CR,back} and P_{CR}(t=0,z<R_{esc}) prescribed imposing that 10% of SN energy into CRs
- $D(t=0,z)=D_{ISM}=10^{28} [E/10GeV]^{0.5} cm^2/s$

<u>Boundary conditions:</u>

• CR and wave fluxes vanish at z=0

Solving scheme:

• Explicit finite differences (conditions for accuracy and stability required)

<u>Computing performances</u>:

 Computation time on a standard workstation few minutes/hours depending on the particle energy and spatial resolution

OUR WORK **Turbulence damping processes considered**

<u>Non-linear Landau damping (Γ_{NLL})</u>: occurs due to the energy exchange between waves and particles. High-frequency waves are damped by the presence of lowfrequency waves and the presence of thermal particles.

$$\Gamma_{NLL} = -\frac{1}{2} \sqrt{\frac{\pi}{2} \frac{k_{bolz} T}{m_p}} \frac{W}{r_L}$$

[Kulsrud 1978; Volk & Cesarsky 1982; Felice & Kulsrud 2001]

Farmer & Goldreich (FG): wave damping by background MHD turbulence. MHD turbulence act as a damping mechanism for CR-generated waves

 $\Gamma_{FG} = \frac{V_A}{\sqrt{L_{MHD}r_L}}$ [Yan & Lazarian 2002; Farmer & Goldreich 2004]

Kolmogorov (*F***_{Kol})**: Non-linear Kolmogorov-type wave interaction. Energy cascade of Alfvenic waves to large wave numbers is anisotropic: the main part of energy density in this turbulence is concentrated perpendicular to the local B.

 $\Gamma_{Kol} = 0.05 \frac{V_A}{r_L} \sqrt{W}$ [Ptuskin & Zirakashvili 2003, 2005]

particles [Kulsrud & Pierce'69; Zweibel & Shull'82]

Ion-neutral damping

OUR WORK

Frequent collisions reduce the Alfven speed to a value determined by the total mass density instead of the ionized mass density

$$V_A = \frac{B}{\sqrt{4\pi m_p n_i}} \qquad \longrightarrow \qquad V_A = \frac{B}{\sqrt{4\pi m_p n_i}}$$

1 TeV – WNM

OUR WORK

Some preliminary results

Nava, Gabici, Marcowith, Morlino & Ptuskin 14, in preparation

- 2 ISM phases: <u>WIM</u> and <u>WNM</u>
- 3 Energies: <u>20 GeV</u>, <u>1 TeV</u>, <u>20 TeV</u>
- 3 times: <u>2 kyr</u>, <u>10 kyr</u>, <u>50 kyr</u>

20 TeV

• t=2000 yr

• t=10000 yr

• t=50000 yr

10²

10

1 TeV

20 GeV

Summary

- Self-consistent solutions of D and P_{CR} in the quasi-linear limit
- Streaming instability as source of turbulence
- Different collisional and collisionless damping
- Two ISM phases: WNM & WIM
- Deviation from the test particle solution at E_{CR}<1 TeV</p>
- Strong self-confinement of CRs of GeV CRs, even at late times

Further developments:

CR spectra and gamma-ray spectra: constraints from gamma-ray observations, gamma-ray production from clouds