Cosmic-ray ionization and heating in molecular clouds

Daniele Galli INAF-Osservatorio Astrofisico di Arcetri Firenze (Italy)

in collaboration with:

Alfred E. Glassgold (University of Berkeley) Marco Padovani (LUPM Montpellier) Patrick Hennebelle (CEA Saclay)

Outline

• Importance of low-energy CRs:

1. Primary source of ionization in UV-shielded regions of MCs

- 2. Drive the formation of polyatomic ions and molecules
- 3. Important source of heating in MCs
- 4. Produce light elements (Li, Be, B) by spallation reaction

 $[p, \alpha]_{CR} + [C, N, O]_{ISM} \rightarrow [{}^{6}Li, {}^{7}Li, {}^{9}Be, {}^{10}B, {}^{11}B]$

5. Produce γ -ray diffuse emission by π_0 decay

 $p_{CR} + p_{ISM} \rightarrow p + p + \pi^0 + \pi^+ + \pi^- \quad \pi^0 \rightarrow 2\gamma$ 6. Produce γ -ray lines by nuclear excitation $[p, \alpha] + [C, 0] \rightarrow [C^*, 0^*] \rightarrow \gamma$ (4.44, 6.13 MeV)

Consequence of 1:

• control the degree of coupling with B with gas (electrical resistivity)

Molecular Clouds: "absorbers" of low-energy CRs

RANGES OF ENERGETIC PROTONS EXPRESSED AS THE PRODUCT OF Rn in cm⁻²

E (MeV)	Measured Rn	Calculated Rn	
1	2.5×10^{20}	2.6×10^{20}	
2	8.8×10^{20}	9.2×10^{20}	
10	1.6×10^{22}	1.6×10^{22}	
20	5.9×10^{22}	5.9×10^{22}	
50	3.2×10^{23}	3.2×10^{23}	
100	1.2×10^{24}	1.2×10^{24}	

Cravens & Dalgarno (1978)

Roman-Duval et al. (2010)

Cosmic ray penetration in protostellar disks

Cleeves, Adams & Bergin (2013)

Spectrum of low-energy CR protons

Valdès-Galicia et al. (2006)

Components of low-energy CRs measured on Earth

Stone (1977)

Bow Shock?

International weekly journal of science Home News & Comment Research Careers & Jobs Current Issue Archive Audio & Video News & Comment News 2013 November Article

NATURE | NEWS

< 🖾

Voyager 1 has reached interstellar space

High electron densities show the craft left the Sun's bubble of influence in 2012.

Ron Cowen

12 September 2013

Stone et al. (2012)

Voyager-1 proton spectrum

Potgieter (2013)

Voyager 1 electron spectrum

<u>Warning:</u> Voyager-1 spectra are heliopause spectra, not Galactic spectra.

Potgieter (2013)

CR-ionization of H₂

E (MeV)	\overline{w}_i (eV)	
1	24.3	
2	26.0	
10	30.4	
20	32.1	
50	34.1	
100	35.6	

Cravens & Dalgarno (1978)

• Thomson (1912) and Bohr (1913) classical

$$\sigma_T^{\rm ion}(v) = \frac{4\pi Z^2 e^4}{m_e v^2} \left(\frac{1}{I} - \frac{2}{m_e v^2}\right) \qquad \langle E_e \rangle \to I \ln(m_e v^2/2I) \quad \text{if } v^2 \gg 2I/m_e$$

• Bethe (1930, quantistic) and Bethe (1932, quantistic relativistic)

$$\sigma_B^{\rm ion} = \frac{4\pi Z^2 e^4}{m_e c^2 \beta^2} \left[\ln \frac{2m_e c^2 \beta^2}{I(1-\beta^2)} - \beta^2 \right]$$

Padovani et al. (2009)

Padovani et al. (2009)

Given a cosmic ray spectrum j(E) and ionization cross section $\sigma(E)$, the ionization rate ζ_{CR} can be calculated theoretically

$$\zeta_{CR} = 4\pi \int_{E_{low}}^{E_{high}} j(E)\sigma(E)dE$$

- Hayakawa et al. (1961), Spitzer & Tomasko (1968) for H
- Glassgold & Langer (1974) for H₂

 \rightarrow "Spitzer value" $\zeta_{CR} \approx 1-2 \times 10^{-17} \text{ s}^{-1}$

The cosmic ray heating rate is then

$$\Gamma_{CR} = \zeta_{CR} Q$$

Where Q is the heat deposited per ionization.

CR ionization rate in diffuse clouds

CR ionization rate in dense clouds

Caselli, Walmsley, Terzieva & Herbst (1998)

Summary of observations of ζ_{CR}

CR propagation in 1D cloud

- Uniform density
- No magnetic field
- Continuous slowing down ("thick target") approximation

Energy losses of CR–protons and electrons in H₂

Evolution of CR-proton spectrum as function of log N(H₂)

"minimum" LIS spectrum (Webber 1998) "maximum" LIS spectrum (Moskalenko et al. 2002)

Comparison with observations

Heating processes in the cold neutral medium

- Removal of an electron from an atom, molecule or dust grain by an energetic photon (UV or X-ray) or particle (CR).
- The suprathermal electron heats the gas by elastic collisions until it is thermalized:

$$t_{
m therm}\sim rac{1}{n\langle\sigma v
angle}$$
 ~ few yr for 1 eV electron in a molecular cloud

- The ionized atom or molecule reacts exothermally with other species by dissociative recombination or ionic reactions (*chemical heating*).
- NB: different from the heating due to the dissipation of Alfvén waves created by CR streaming.

Cosmic-ray heating

• Dominant source of ionization and heating in the densest, UV-shielded molecular gas inside molecular clouds.

$$\Gamma_{\rm CR} = \zeta Q n$$

where n is the density and ζ is the CR ionization rate (in s⁻¹)

Q = average energy deposited as heat per ionization (in eV)

- Q = 6 eV (Glassgold & Langer 1973, Cravens & Dalgarno 1978)
- Q = 7 eV (Stahler & Palla 2004, Tielens 2005)
- Q = 8 eV (Tielens & Hollenbach 1985)
- Q = 9 eV (Maloney et al. 1996)
- Q = 12 eV (Yusef-Zadeh et al. 2007, Wolfire et al. 2010)
- Q = 20 eV (Goldsmith & Langer 1978, Goldsmith 2001)

	ζ Per Diffuse Cloud	Molecular Cloud Clump	Prestellar Core Inner Region	Protoplanetary Disk Active Region at 1 AU
$n_{\rm H} ({\rm cm}^{-3})$	80	10 ⁴	107	10 ¹⁰
T (K)	≃60	10	6	1000
xe	2×10^{-4}	10^{-7}	10 ⁻⁹	10 ⁻⁶
H ₃ ⁺ destruction	DR ^a	DR + I ^a	DR + I	DR + I
Qel/rot (eV)	4	2	2	2
Qvib (eV)	0	0	5	5
Qdiss (eV)	1	2	2	2
Q _{chem} (eV)	5	9	8	9
Total heating Q (eV)	10	13	17	18

X-Ray and Cosmic-ray Heating (in eV) in Molecular Regions

Note, a DR stands for dissociative recombination and I for ionic reactions.

Glassgold, Galli & Padovani (2012)

UV photons vs. CRs

Extinction map of a molecular cloud (Pipe nebula)

Lombardi, Alves & Lada et al. (2006)

Extinction map of a starless core (B68)

Alves, Lada & Lada (2001)

Thermal balance of gas and dust

• Thermal balance of dust (T_{dust})

$$\Gamma_{\text{dust}}$$
 - Λ_{dust} + Λ_{gd} =0

• Thermal balance of gas (T_{gas})

$$\Gamma_{CR} - \Lambda_{gas} - \Lambda_{gd} = 0$$

$$\Gamma_{cr} = \zeta_{CR} Q$$

$$\Lambda_{g} = \alpha T_{gas}^{\ \beta} \text{ with } \alpha, \beta \text{ function of } n(H_{2}), \text{ depletion, etc.}$$

$$\Lambda_{gd} = \alpha_{gd} n(H_{2})^{2} T_{gas}^{1/2} (T_{gas} - T_{dust})$$

Temperature profile of a prestellar core

Galli, Walmsley & Gonçalves (2002)

Measurements of T_{gas} constrain ζ_{CR} in L1544

from chemical modeling $\zeta = 1.3 \times 10^{-17} \text{ s}^{-1}$ (Vastel et al. 2006)

Temperature of molecular clouds in the MW and M82

From synchrotron emission: j_{CR} (M82)/ j_{CR} (MW) ~ 170

Suchkov, Allen & Heckman (1993)

Ionization fraction and magnetic field diffusion

• CR ionization of H₂ balanced by recombination:

 $\zeta_{CR} n(H_2) \approx \beta n(i) n(e)$ $\rightarrow x_e \approx (\zeta/\beta)^{1/2} n(H_2)^{-1/2}$ For $\zeta \approx 10^{-17} \text{ s}^{-1}$, $\beta \approx 10^{-9} \text{ cm}^3 \text{ s}^{-1}$ $\rightarrow x_e \approx 10^{-7} \text{ for } n(H) \approx 10^6 \text{ cm}^{-3}$

• The field and the ions slip through the neutrals on a time scale

 t_{AD} /yr $\approx 5 \times 10^{13} x_e$

For $x_e \approx 10^{-7} \rightarrow t_{AD} \approx 3-10 \text{ Myr}$

Nakano et al. (2002)

Ambipolar diffusion in a weakly ionized gas

CRs in magnetic fields: $r_B >> r_L$

- Effective column density: N(H)/cos α
- Focusing: enhances CR flux (proportional to B)
- Mirroring: reduced CR flux (μ adiabatic invariant) $r_L \approx 10^{-2} (E/GeV)^{1/2} (B/10 \ \mu G)^{-1} AU$ (E < GeV)

CRs in small-scale magnetic fields: $r_B \sim r_L$

- Small-scale magnetic fluctuations (``MHD waves'') scatter CRs
- MHD waves: part of the turbulent cascade or self-excited by CRs
- MHD waves in MCs damped by ion-neutral collisions $\Gamma_{in}=1/2 v_{in}=1/2 n_n < \sigma v > m_n/m_i$
- If waves efficiently damped: MCs are "free zones" where CRs stream freely (Kulsrud & Pierce 1969; Skilling 1971).
- Can low-energy CRs be "excluded" from clouds? (Skilling & Strong 1976; Cesarsky & Volk 1978; Everett & Zweibel 2012; Morlino 2014)

Gravitational collapse with ambipolar diffusion and variable $\boldsymbol{\zeta}$

Mellon & Li (2009)

Conclusions

- An increasing flux of low-energy CR (below ~100 MeV, either nuclei or electrons) is needed to explain ionization rates in diffuse and dense clouds. Origin?
- ζ_{CR} in clouds ~ N(H₂)^{- α} with 0 < α < 1 up to N(H₂) ~ 10²⁵ cm⁻². Then exponential decrease ~ exp (- Σ_0) with 50 < Σ_0 < 100 g cm⁻².
- Temperature measurements in UV-shielded dense gas (cores) can constrain ζ_{CR} as much (or better) than chemistry.
- Variations of ζ_{CR} in the range $10^{-16} \text{ s}^{-1} 10^{-18} \text{ s}^{-1}$ affect the dynamics of cloud collapse and star formation.
- Simple "hourglass" B-field: mirroring > focusing but ζ_{CR} reduced only by factor 2-3. More complex B? (see Marco's talk).