

CRIME workshop APC Paris, Nov 14th 2014

The role of cosmic rays on magnetic field diffusion and the formation of protostellar discs

<u>Marco Padovani</u> (LUPM – Montpellier)

in collaboration with

Daniele Galli (INAF-OAA – Firenze) Patrick Hennebelle, Marc Joos (CEA – Saclay) Benoît Commerçon (ENS – Lyon)

Development of new telescopes with higher and higher resolution
New observation techniques with consequent large data sets

- H_{3}^+ : UKIRT, VLT-CRIRES Indriolo+ (2012)
- \bullet OH⁺, H₂O⁺ : Herschel Neufeld+ (2010), Gerin+ (2010)
- γ-ray emission : Fermi-LAT (CTA) Montmerle (2010)
- magnetic field morphology : SMA, Planck (ALMA) Girart+ (2009)

All these observations require a solid theoretical support. A detailed effort in the modelling of the CR spectrum, and more precisely of its low-energy tail, was missing as well as the integration of the models in chemical and numerical codes for interpreting observations.

- Diffuse clouds (A_v ~ I mag) → the UV radiation field is the principal ionising agent (photodissociation regions);
- Dense clouds ($A_v \gtrsim 5 \text{ mag}$) \rightarrow the ionisation is due to low-energy CRs (E < 100 MeV) and, if close to young stars, to soft X–rays (E < 10 keV).

Dense cores (HCO+,DCO+) Caselli+ (1998)

Diffuse clouds (OH, HD, NH)

Black & Dalgarno (1977), Hartquist+ (1978), Black+ (1978), van Dishoeck & Black (1986), Federman+ (1996)

 (H_3^+)

McCall+ (1993), Geballe+ (1999) McCall+ (2003), Indriolo+ (2009,2012)

 $(\mathbf{OH^+},\mathbf{H_2O^+})$

Neufeld+ (2010), Gerin+ (2010)

Main questions:

- origin of the CR flux that generates such a high ionisation rate (ζ_{CR}) in diffuse regions;
- how to reconcile these values with those ones measured in denser regions;

Different strategies approaching these problems:

effects of Alfvén waves on CR streaming
 Skilling & Strong (1976); Hartquist+ (1978); Padoan & Scalo (2005);
 Everett & Zweibel (2011); Rimmer+ (2012); Morlino & Gabici (2014);

- magnetic mirroring and focusing Cesarsky & Völk (1978); Chandran (2000); PM & Galli (2011,2013);
- possible low-energy CR flux able to ionise diffuse but not dense clouds Takayanagi (1973); Umebayashi & Nakano (1981); McCall+ (2003); PM, Galli & Glassgold (2009)

The story so far...

Theoretical model (PM, Galli & Glassgold 2009)

computing the variation of the ionisation rate due to cosmic rays, ζ_{CR} [s⁻¹], inside a molecular cloud, with the increasing of the column density, N [cm⁻²], of the traversed interstellar matter.

CR-proton and electron energy loss function

- Theoretical challenge: formation of protostellar discs.
- Magnetic fields entrained by collapsing cloud brake any rotational motion and prevents cloud's collapse (Galli+ 2006; Mellon & Li 2008; Hennebelle & Fromang 2008).

Observational evidence of the presence of discs

• A number of possible solution to solve the magnetic braking

 $(i) \hspace{0.1 cm} ext{non-ideal MHD effects} \hspace{0.1 cm} ext{(Shu+ 2006; Dapp \& Basu 2010;}$

Krasnopolsky+ 2011; Braiding & Wardle 2012)

- (*ii*) misalignment between **B** and **J** (Hennebelle & Ciardi 2009; Joos+ 2012)
- (*iii*) turbulent diffusion of **B** (Seifried+ 2012; Santos-Lima+ 2013; Joos+ 2013)
- (*iv*) depletion of the infalling envelope anchoring **B** (Mellon & Li 2009; Machida+ 2011)

Numerical models : rotating collapsing core

Table 1. Parameters of the simulations described in the text (from Joos et al. 2012): mass-to-flux ratio, initial angle between the magnetic field direction and the rotation axis, time after the formation of the first Larson's core (core formed in the centre of the pseudo-disc with $n \ge 10^{10}$ cm⁻³ and $r \sim 10 - 20$ AU), maximum mass of the protostellar core and of the disc. Last column gives information about the disc formation.

Case	λ	$\alpha_{\mathrm{B,J}}$	t	M_{\bigstar}	$M_{\rm disc}$	Disc?
		[rad]	[kyr]	$[M_{\odot}]$	$[M_{\odot}]$	$(\mathbf{Y}^a / \mathbf{N}^b / \mathbf{K}^c)$
A_1	5	0	0.824	_	_	Ν
A_2	5	0	11.025	0.26	0.05	Ν
В	5	$\pi/4$	7.949	0.23	0.15	Y
С	5	$\pi/2$	10.756	0.46	0.28	Κ
D	2	0	5.702	0.24	_	Ν
E	17	0	6.620	0.43	0.15	K

^{*a*} A disc with flat rotation curve is formed (Fig. 15 in Joos et al. 2012).

^b No significant disc is formed $(M_{\rm disc} < 5 \times 10^{-2} M_{\odot})$.

^c A keplerian disc is formed (Fig. 14 in Joos et al. 2012).

Padovani+ 2013

Numerical models : rotating collapsing core

Intermediate magnetisation λ =5 Aligned rotator (**J**,**B**)=0

It is not possible to unravel magnetic from column-density effects, but both intervene on the decrease of ζ_{CR} . Deviations between iso-density contours and ζ_{CR} maps can be interpreted as due to magnetic imprints

Field lines in the inner 600 AU

Numerical models : rotating collapsing core

Intermediate magnetisation $\lambda=5$ Perpendicular rotator $(\mathbf{J},\mathbf{B})=\pi/2$ $\zeta_{\rm CR} < 10^{-18} \, {\rm s}^{-1}$ down to $2 \times 10^{-21} \, {\rm s}^{-1}$ in the inner area with an extent of a few tenths of AU. We can assume that the gas is effectively decoupled with the magnetic field.

Field lines in the inner 600 AU

including magnetic effects

Numerical models : rotating collapsing core

Intermediate magnetisation $\lambda=5$ Perpendicular rotator $(\mathbf{J},\mathbf{B})=\pi/2$ $\zeta_{\rm CR} < 10^{-18} \, {\rm s}^{-1}$ down to $2 \times 10^{-21} \, {\rm s}^{-1}$ in the inner area with an extent of a few tenths of AU. We can assume that the gas is effectively decoupled with the magnetic field.

Field lines in the inner 600 AU

400 4000 2000 200 x [AU] -2000-200-4000-4002000 4000 -4000 - 20000 -400 -2000 200 400 z [AU] z [AU] 400 4000 200 2000 z [AU] z [AU 0 -2000-200-4000-400-4000 - 20000 2000 4000 -400 -200 200 400 0 y [AU] y [AU] -20.4-19.8-17.4-16.8-16.2-15.6-19.2-18.0Padovani+ 2013

without magnetic effects

Numerical models : rotating collapsing core

Weak magnetisation $\lambda = 17$ Aligned rotator $(\mathbf{J}, \mathbf{B}) = 0$

The magnetic braking is very faint and the rotation acts in wrapping powerfully the field lines. The region with $\zeta_{\rm CR} < 10^{-18} \, {\rm s}^{-1}$ broadens out along the rotation axis where field line tangling up is very marked.

Field lines in the inner 600 AU

including magnetic effects

Numerical models : rotating collapsing core

Weak magnetisation $\lambda = 17$ Aligned rotator $(\mathbf{J}, \mathbf{B}) = 0$

The magnetic braking is very faint and the rotation acts in wrapping powerfully the field lines. The region with $\zeta_{\rm CR} < 10^{-18} \, {\rm s}^{-1}$ broadens out along the rotation axis where field line tangling up is very marked.

Field lines in the inner 600 AU

without magnetic effects

A useful fitting formula

When in presence of a magnetic field, the effective column density, N_{eff} , seen by a CR can be much larger than that obtained through a rectilinear propagation.

 $N(H_2)$ = average column density seen by an isotropic flux of CRs

$$N_{\text{eff}} = (1 + 2\pi \mathcal{F}^s) N(\text{H}_2)$$
$$\mathcal{F} = \mathcal{F}(|\mathbf{B}|, |B_{\phi}/B_p|), \ s = s(n)$$

Cosmic rays and magnetic diffusion

(PM, Galli, Hennebelle, Commerçon & Joos 2014)

Drifts of charged species with respect to neutrals determines different regimes of magnetic diffusivity.

$$\frac{\partial \vec{B}}{\partial t} + \nabla \times (\vec{B} \times \vec{U}) = \nabla \times \left\{ \eta_{\rm O} \nabla \times \vec{B} + \eta_{\rm H} (\nabla \times \vec{B}) \times \frac{\vec{B}}{|B|} + \eta_{\rm AD} \left[(\nabla \times \vec{B}) \times \frac{\vec{B}}{|B|} \right] \times \frac{\vec{B}}{|B|} \right\}$$

Resistivities

Conductivities

$$\eta_{AD} = \frac{c^2}{4\pi} \left(\frac{\sigma_P}{\sigma_P^2 + \sigma_H^2} - \frac{1}{\sigma_{\parallel}} \right) \qquad \qquad \sigma_{\parallel} = \frac{ecn(H_2)}{B} \sum_i Z_i x_i \ \beta_{i,H_2}$$
$$\eta_H = \frac{c^2}{4\pi} \left(\frac{\sigma_H}{\sigma_P^2 + \sigma_H^2} \right) \qquad \qquad \sigma_P = \frac{ecn(H_2)}{B} \sum_i \frac{Z_i x_i \beta_{i,H_2}}{1 + \beta_{i,H_2}^2}$$
$$\eta_O = \frac{c^2}{4\pi\sigma_{\parallel}} \qquad \qquad \sigma_H = \frac{ecn(H_2)}{B} \sum_i \frac{Z_i x_i}{1 + \beta_{i,H_2}^2}$$

The degree of diffusion is determined by the ionisation fractions that, in turn, are determined by ζ^{H2} .

Abundance of charged species

We adopted a simplified chemical network that computes the steady-state abundance of \mathbf{H}^+ , $\mathbf{H_3}^+$, a typical molecular ion $m\mathbf{H}^+$ (e.g. HCO^+), a typical metal ion M^+ (e.g. Mg^+), e^- and $dust \ grains \ (g^0, \ g^-)$ as a function of:

- H₂ density ;
- Temperature ;

- Cosmic-ray ionisation rate.

computed at each spatial position in our models.

Table 1. Parameters of the simulations described in the text: non-
dimensional mass-to-flux ratio A, initial angle between the magnetic
field direction and the rotation axis and, time after the formation of the
first Larson's core t (core formed in the centre of the pseudo-disc with
$n \ge 10^{10} \text{ cm}^{-3}$ and $r \sim 10 - 20 \text{ AU}$), initial mass M_{in} , mass of the protostellar core M_{\bullet} and of the disc M_{disc} .

Case	×.	and]	f [kyr]	M_{in} $[M_{\odot}]$	M* [M]	M _{disc} [M ₀]
L	5	0	0.824	1	-	- :
La	5	π/2	10.756	1	0.46	0.28
H	~2	no initial rotation	6.000	100	1.24*	0.87*

Padovani+ 2014

Effects of the grain size distribution

Grains play a decisive role in determining the degree of coupling between gas and B.

Three grain size distribution

- $a_{\min} = 10^{-5} \text{ cm}$ (representative of large grains formed by compression and coagulation during collapse; Flower et al. 2005)
- $a_{\min} = 10^{-6} \text{ cm}$ (the minimum grain radius of a MRN size distribution Mathis et al. 1977 that gives the same grain opacity found by Flower et al. 2005)

 $a_{\min} = 10^{-7} \text{ cm} \text{ (typical size of very small grains)}$

 $a_{\rm max} = 3 \times 10^{-5} \ {\rm cm}$ (Nakano et al. 2002)

larger grains \rightarrow less number of grains \rightarrow more free electrons (one electron per grain)

Dependence of chemical abundances on $\zeta^{\rm H2}$

Density of charged species usually parameterised as $n(i) \propto (\zeta^{H_2})^{k'}$ with $k' \approx 1/2$ (e.g. Ciolek & Mouschovias 1994, 1995), but... it depends on the grain size!

 $egin{aligned} {
m n(H_2)} = & 10^6 {
m ~cm^{-3}} \ a_{
m min} = & 10^{-5} {
m ~cm} {
m (solid lines)} \ a_{
m min} = & 10^{-7} {
m ~cm} {
m (dotted lines)} \end{aligned}$

k	10^{-5}	10-7
e^-	$\mathbf{1/2}$	1
$M\!$	1/2	0
$oldsymbol{g}^-$	0	1/2
$egin{array}{c} \mathbf{H_{3}^{+},\mathbf{H^{+}},}\ m\mathbf{H^{+}} \end{array}$	1/2	1/2

$\zeta_{\rm H2}$ and the gas-magnetic field decoupling

Drift velocity of magnetic field U_B : it can be represented by the velocity of the charged species (frozen with the field lines) with respect to neutrals.

By comparing $\mathbf{U}_{\mathbf{B}}$ with the fluid velocity, it is possible:

— to assess the degree of diffusion of the field;

— to estimate the size of the region where gas and B are decoupled.

Following Nakano et al. (2002), U_B can be written as a function of the resistivities.

$$\vec{U}_B = \vec{U}_{AD} + \vec{U}_H + \vec{U}_O = \frac{4\pi}{cB^2} \left[\left(\eta_{AD} + \eta_O\right) \vec{j} \times \vec{B} + \eta_H \left(\vec{j} \times \vec{B}\right) \times \frac{\vec{B}}{B} \right]$$

$$\frac{1}{t_B} = \frac{1}{t_{\rm AD}} + \frac{1}{t_{\rm H}} + \frac{1}{t_{\rm O}}$$

 $t_k = R/U_k$, (k = AD, H, O)

R is the typical length scale of the region (assumed as the distance from the density peak)

 $\zeta_{\rm H2}$ and the gas-magnetic field decoupling $\frac{1}{t_B} = \frac{1}{t_{\rm AD}} + \frac{1}{t_{\rm H}} + \frac{1}{t_{\rm O}}$ $t_k = R/U_k$, (k = AD, H, O)

R is the typical length scale of the region (assumed as the distance from the density peak)

Nakano et al. (2002): comparison between t_B and the free-fall time scale. Here we compare t_B with the $t_{dyn} = R/U$ (U = fluid velocity including infall and rotation).

In regions where:

 $-t_{B} < t_{dyn}$: B is partially decoupled and it has less influence on gas dynamics; $-t_B > t_{dyn}$: diffusion is not efficient and B remains well coupled to the gas.

Is there a relevant variation in t_B using a constant $\zeta^{H2} \approx 10^{-17}$ s⁻¹ or accounting correctly for the dependence of ζ^{H2} on N(H₂) and B?

YES!

Conclusions

• The study of low energy (E < 1 GeV) cosmic rays is fundamental for correctly dealing with chemical modelling and non-ideal MHD simulations;

• In order to study the cosmic-ray propagation we accounted for **energy losses** and **magnetic field effects**: an increment of the toroidal component, and in general a **more tangled magnetic field**, corresponds to a **decrease of** ζ_{H2} because of the growing preponderance of the **mirroring effect**;

• The extent to which density and magnetic effects make $\zeta_{\rm H2}$ decrease can be ascribed to the degree of magnetisation; $\zeta_{\rm H2} < 10^{-18} \, {\rm s}^{-1}$ is attained in the central **300-400 AU**, where $n > 10^9 \, {\rm cm}^{-3}$, for toroidal fields larger than about 40% of the total field in the cases of intermediate and low magnetisation ($\lambda = 5$ and 17, respectively);

• We found an increase in η in the innermost region of a cloud after the collapse onset: (1) field has to be considerably twisted; (2) dust grains had time to grow by coagulation.

A correct treatment of CR propagation can explain the occurrence of a decoupling region between gas and magnetic field that in turn affects the disc formation.