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ABSTRACT

A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for
radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous
transport. While recovering results on known hydrodynamic and both weak- and strong-field magnetohy-
drodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model dem-
onstrate a much richer variety of instabilities accessible to the plasma than previously realized. We show
that both weakly and strongly magnetized accretion disks are prone to strong nonaxisymmetric instabilities.
The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic
spectroscopic analysis.

Subject headings: accretion, accretion disks — instabilities — MHD — waves

1. HYDROMAGNETIC STABILITY FOR STATIONARY EQUILIBRIA

Magnetohydrodynamic (MHD) spectroscopy (Goedbloed et al. 1994) entails the ability to calculate all MHD perturbations accessible
to a particular magnetized plasma configuration (theforward spectral problem) and holds the promise to use the MHD spectrum to
diagnose the internal plasma state (thebackward spectral problem). In this Letter we predict all MHD waves and instabilities for
magnetized accretion disks.

To analyze the entire MHD spectrum of gravitationally and thermally stratified, rotating magnetized equilibrium configurations,
we use the formalism of Frieman & Rotenberg (1960). The equation of motion for the Lagrangian displacement of a fluidy
element is

2� y �y
r � 2rv · � � �P � B · �Q � Q · �B � � · (ry)g � � · [ry(v · �)v � rvv · �y] p 0, (1)2�t �t

where measures the Eulerian perturbation of total pressure, is the EulerianP p �y · �p � gp� · y � B · Q Q p � � (y � B)
perturbation of the magnetic fieldB, andg is the gravitational acceleration. Equation (1) describes all waves supported by a time-
invariant equilibrium with densityr, pressurep, flow field , gravityg, and magnetic fieldB; g is the ratio of specific heats. Wev
specify our analysis to one-dimensional axisymmetric stationary equilibria satisfying

22 2 ′ 2B � B v G M Bv z C ∗ vvp � p r � � , (2)( )( ) 22 r r r

where the prime denotes differentiation with respect to the radial coordinater from an (r, v, z) cylindrical system. Hence,
we concentrate on wave motions about an equilibrium where centrifugal forces, gravity, pressure gradients, and magnetic
forces balance. The one-dimensionality limits the generality by representing the gravitational influence of a central body of
mass by a line source , but this at most introduces a vertical wavelength cutoff on the validity of2M g(r) p �G M /r e∗ C ∗ r

our results.
The equilibrium symmetry allows for a decoupled analysis of individual normal mode solutions wherey(r, v, z, t) p

. For the radially varying magnetized equilibria, it is instructive to use a field line projection[y (r), y (r), y (r)] exp i(mv � kz � qt)r v z
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that introduces the basic variables , , and . It is then a matter of algebra to turn the Frieman-ˆˆ ˆx p ry h p ir (B/B # e ) · y z p irB/B · yr r

Rotenberg system (1) into

′ 
2 2 2gp � B B gp � B G B B gp F G M G Fv v C ∗ 2rD D � F � r rD � 2k rD 3 r �rV �rVr r r r g g2 3( )r r r B r r B r B B

2G B B G GF Gv2 2 2( ) ( )� gp � B D � 2k � gp � B � F �gp � �rV 0 0r g2 2B r B B B{ 2   F GF F F
�gp D �gp �gp �rV 0 0r g2 2B B B B   

B Bz v  ˆ0 � � x B B

v Bzv 2˜ ˜ ˆ�2r q � 0 0 � rq I h p 0. (3)
r B  } Bv ˆ� 0 0 z 

B 

In this system, the radial derivative operator is denoted by , while the parallel gradient operator becomes the algebraic factorDr

. Furthermore, and . The latter measures the deviation from a2 2F { �iB · � p mB /r � kB G { mB /r � kB V { v /r � G M /rv z z v g C ∗v

Keplerian disk. The terms linearly proportional to the Doppler-shifted frequency represent the Coriolis effect.q̃ p q � mv /r � kvv z

For static cylindrical equilibria without external gravitational field, this representation of the eigenvalue problem was introduced
in Goedbloed (1975).

From equation (3) one can immediately obtain the Alfve´n and slow continuous parts of the ideal MHD spectrum by looking
at extreme localization of the perturbations on single flux surfaces ( ). The first component can then be integrated atD r �r

once and, when inserted into the second and third, yields and , respectively. The Alfve´n continuum correspondsˆˆAh p 0 Sz p 0
to singular solutions , where . The slow modes are given by , where2 2 ˆ˜ĥ ∝ d(r � r ) A(r ) { (rq � F ) (r ) p 0 z ∝ d(r � r )A A A S

. Owing to the radial variation of the equilibrium and the Doppler shift, four con-2 2 2˜S(r ) { [rq (g p � B ) � g pF ] (r ) p 0S S

tinuous ranges of real eigenfrequencies are found. With the cluster points for the fast subspectrum, these Doppler-q̃ p ��
shifted forward and backward Alfve´n and slow continua determine the threefold structure of the MHD spectrum. These
continua are not influenced by gravity or rotation.

An interesting limit of this system has obtained a lot of attention in the accretion disk literature. Considering a weakly magnetized
accretion disk, it is possible to show that the combination of differential rotation with a weak magnetic field introduces a linear “weak-
field–shearing” MHD instability (Balbus & Hawley 1991). As recently discussed in a review by Balbus & Hawley (1998), one can
derive a sixth-order dispersion relation governing local linear disturbances with purely vertical wave numbers in disks whereˆk p kez

the restricted hydrodynamic equilibrium relation holds. This dispersion relation for axisymmetric modes is formallyV p 0 m p 0g

found from equation (3) by setting , neglecting all curvature terms where appears explicitly, and using . It can thenD p 0 B V p 0r v g

be written as

2 2 2 2 2 2F B F B G M F G M Fv C ∗ C ∗2 4 2 2 2 2 2 2 4 2 2 2 2 2 2˜ ˜ ˜ ˜ ˜q � q � k q c � � k c � k q � q k k c � � 3 � 3 k c p 0. (4)s s s s( ) ( ) ( )[ ] [ ]3 3{ }r r r r r r r r

Here is the epicyclic frequency and the squared sound speed is . This equation suggests2 ′ 2 3 2k { 2v (rv ) /r p G M /r c p gp/rC ∗ sv v

marginal stability for .2 3F /r p 3G M /rC ∗
An equivalent formulation of the MHD eigenvalue problem for equilibria satisfying equation (2) reduces the Frieman-Rotenberg

system to a system in terms of the variables :ˆ2 # 2 (x, P)

′AS ˆ ˆx C D x
� p 0. (5)( ) ( )( )P E �C Pr
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Fig. 1.—MHD spectrum for a weakly magnetized accretion disk for perturbations where . As the Doppler shift vanishes ( ), identification ofk p ke k · v p 0z

the different subspectra is easy ( for forward and backward Alfve´n and slow modes, respectively,k for the epicyclic ones, and for forward and backward� � �A , S F
fast modes). The magnetorotational instability is identified as a cluster spectrum of discrete modes associated with the slow continuum.

In this equation, the following terms appear:

2 3˜r 2m r q Bv2˜ ˜ ˜C p V rq A � (B F � rv q)S � 2 (B q � v F), (6)g v vv v3 2r r r

2m2 4 2˜D p r q � � k S, (7)( )2r

2 ′ ′ 2 ˜AS A B r r r A B B q � v Fv v v v2 2 2˜E p � � � k � V � V � 4r q Vg g g( )[ ]2 2r r r r r r S r S

4 22 2 2 2 2˜ ˜ ˜� { r q B (B q � v F) � [(B � rv )F � 2rqv B ]FS}. (8)v v v vv v v4r

System (5) reduces to the normal mode picture by Appert, Gruber, & Vaclavik (1974) for static cylindrical equilibria without
gravity. Bondeson, Iacono, & Bhattacharjee (1987) and Hameiri (1976) derived this system for cylindrical equilibria with flow
but without gravity. An analysis for gravitating, flowing magnetized equilibria in planar geometry is found in van der Holst,
Nijboer, & Goedbloed (1999).

The set of equations (5) again demonstrates that the continuous part of the MHD spectrum is found from and .A p 0 S p 0
The ranges in frequency where are not part of the continuous spectrum (for details, see Goedbloed 1998). Either of theD p 0
formalisms given by set (3) or system (5) or the equivalent second-order Sturm-Liouville–type equation can be used to analyze
the MHD spectrum of magnetized accretion disks. In particular, assuming a radial variation , we obtain a local dispersionexp (ik r)r

relation given by

2 2A S2 2k � C � DE p 0. (9)r 2r

Similar to the static case or the more general one including flow (Bondeson et al. 1987), one can prove the proportionality
so that the continua can be factored out. This leaves a sixth-order polynomial in that governs all discrete2 ˜C � DE ∝ AS AS p 0 q

local modes. Again, as a formal limit obtained by nullifying terms wherem, , or appear explicitly and assuming a Kepleriank Br v
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equilibrium , this polynomial is the dispersion relation (4). The more general relation (9) leads immediately to the followingV p 0g

marginal stability criterion governing axisymmetric perturbations when :B p 0v

22 2 ′F 4v V rgv2 2 2 2 2F (k � k ) � k k � � � V p 0. (10)r g( )[ ]2 2r r c rs

The multiplicative factor highlights the essential magnetic character of this criterion. For nonvanishing , even the2 2 2F p k B Bz v

case of equation (9) allows for overstable or damped MHD waves. The general relation (9) recovers various known results.m p 0
Terquem & Papaloizou (1996) presented a stability analysis of accretion disks with both radial and vertical equilibrium variations
but with a purely toroidal magnetic field. In particular, a stability criterion for axisymmetric perturbations required a parameterBv

defined in their equation (29) to be positive. If one considers only radial equilibrium variation, the same is found from our dispersion
relation (9). Kim & Ostriker (2000) analyzed the stability of a cold ( ) radially stratified disk. Our relation (2) contains theirp p 0
equilibrium as a special case, and their results form a subset of our analysis. For example, their equation (43) for “poloidal buoyancy
modes” follows from equation (9) by taking and assuming . As a final note on system (5), the pure2 2 2˜m p B p v p 0 k B /r k qv z zz

hydrodynamical limit can be written as

2m   2 2 2
 q̃ � � k cs′ 2p mv r v′ˆ ˆx � 2 r x   2 2 2˜ ˜gp r q rc qs

� p 0. (11)
′ ′ ′ ′   r p p r p mv   v2 2˜ P � � (q � k ) � � 2 P   2 ˜r gp r r gp r q   

The continuous part of the spectrum is now collapsed onto the flow continuum (Case 1960). The local dispersion relation (9)2q̃ p 0
with this flow continuum factored out reads

2′ 2 ′ ′mv p m r pv2 2 2 2 2 2 2 2 2˜ ˜ ˜ ˜k c q � c 2 � q � q � � k c k � q � V � p 0. (12)r s s s g( ) ( ) ( )[ ] [ ]2 2r gp r r gp

Several known results are immediately recovered from this relation, especially for modes where it has a simple solution. Form p 0
a polytropic equilibrium with , the limit where at a finite ratio yields , giving a dense2 2 2 2 2˜v p 0 (k , k) r � k /k q p k k /(k � k )r r rz

range of discrete modes within . The same limit shows that stability requires , known as the Rayleigh (1916) criterion.2˜�k ! q ! k k 1 0
The global modes of equation (12) are of the Papaloizou & Pringle (1984) variety. High-m nonaxisymmetric instabilities canm ( 0
be inferred from equation (12), which simplifies in the incompressible limit ( , ) to a bi-squared relation. For weakly′g r � r r 0
magnetized disks, the modes contained in the dispersion relation (12) will be complemented by Alfve´nic and slow magnetosonic
perturbations.

2. FULL SPECTRAL ANALYSIS OF ACCRETION DISKS

With the general formalism for a complete normal mode analysis of magnetized accretion disks in place, we present in the
remainder of the Letter full MHD spectra for a specific thin disk model satisfying equation (2). We use an analytical model of a
disk where the ratio isr-independent. Two other parameters are the constant helicity of the magnetic field2b p 2p/B a p

and the disk aspect ratio , whereH is the disk scale height. If one neglects radiative pressure in the disk,e�B /B e p H/r K 1v z

measures the ratio of the sound to the Keplerian speed (Shakura & Sunyaev 1973). Because of the Newtonian gravitationale p c /Q rs k

field, we describe the physical quantities using radial power laws. To have a constante, must scale as . The density profile�1/2c rs

is set to . For the pressure and magnetic field we use the scaling of and the constantb. The inner radius, the�3/2 �1/2r ∝ r r cs

density, and the Keplerian velocity at the inner radius make all quantities dimensionless. The resulting disk structure isr p
, , magnetic field , and . The rotational velocity will then be ,�3/2 2 �5/2 �5/4 2 1/2 �1/2�r p p e r B p e 2r / [b(1 � a )] B p �aB v p v rz v z v 0

where is found from equation (2). The component is set to zero. We calculate the collection of eigenfrequencies byv (a, b, e) v0 z

a generalization of the LEDAFLOW program (Nijboer et al. 1997). LEDAFLOW computes the entire MHD spectrum of one-
dimensional, gravitationally stratified, magnetized equilibria with flow by solving the linearized MHD equations. The radial
discretization for the eigenfunctions employs quadratic and cubic Hermite finite elements, appropriate for both global and (near-)
singular local modes. We use rigid boundary conditions in the domain . We input the parameters for the equilibriumr � [1, r p 10]out

( ) and the normal mode numbers ( ). Since we consider thin disks, we set . The helicity of the field is takena, b, e m, k e p 0.1 B
to be .a p 1

Weakly magnetized accretion disk.—We present two calculations for a weakly magnetized accretion disk. We set the parameter
. Similar to Balbus & Hawley (1998), we first take a purely vertical wave vector . The vertical wavelength3b p 2 # 10 k p 2p/Hez

should not exceed the vertical size of the disk. In Figure 1 we show the MHD spectrum. We can identify all modes in this plot:
the fast magnetosonic, epicyclic, and (overlapping) Alfve´n and slow magnetosonic continuum modes are all on the real axis. A dense
sequence of discrete modes appears on the imaginary axis: the magnetorotational instability. This sequence is the unstable part of
the slow magnetosonic subspectrum. Performing the same calculation for (hydrodynamical case), only the epicyclic andb r �
sonic modes remain and no unstable mode is found, confirming its slow magnetosonic nature. We present in Figure 2 the spectrum
for nonaxisymmetric perturbations with , . Note the asymmetry due to the Doppler shift . The identificationm p 10 k p 70 k · v ( 0
of the different modes is quite involved since the fast, slow, Alfve´n, and epicyclic frequency ranges are all overlapping. Various
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Fig. 2.—Same as Fig. 1, but for nonaxisymmetric perturbations .(m p 10)
All the slow and Alfvénic subspectra overlap partially, and several cluster
branches of unstable modes are apparent.

Fig. 3.—MHD spectrum of toroidal perturbations in an equipartition accretion
disk ( ). The calculation demonstrates a large collection of unstable modes.b p 1

branches of unstable modes can be seen, where only the rightmost branches correspond to their axisymmetric analogs already
present in Figure 1. The structure suggests the presence of global modes accumulating toward both the Alfve´n and the slow
continua. A full MHD spectroscopic analysis that investigates the mode types from their specific polarization properties is the
subject of future work.

Equipartition accretion disk ( ).—We performed several calculations of MHD perturbations supported by disks where theb p 1
magnetic pressure is of the same order as the thermal one. The results we have obtained are quite clear. If the perturbation is
nonaxisymmetric, unstable branches appear in the spectra. The growth rate of these instabilities grows for increasingm. For the
disk equilibrium discussed above, no axisymmetric unstable modes are found. The spectral structure is shown in Figure 3 for

. Because all the terms in equation (5) are of the same order, a purely analytical approach is virtually impossible.m p 10

3. CONCLUDING REMARKS

We applied a general formalism to an astrophysical system where most MHD instabilities are believed to occur: the accretion disk.
Our analysis covers both unmagnetized and magnetized disks. Complete MHD spectra were presented for equilibria involving the
gravity of a central object, velocities and , and both thermal pressure and a magnetic field with azimuthal and vertical components.v vv z

We deduced the relations (9), (10), and (12), describing the threshold of several known instabilities for a differentially rotating fluid,
including the Papaloizou-Pringle modes and the weak-field magnetorotational mode. The relations apply to fully compressible, non-
Keplerian magnetized disks. If one ignores vertical stratification, they generalize the analysis of Papaloizou & Szuszkiewicz (1992),
who considered only modes when no azimuthal field was present. We complemented our analytical approach with numericalm p 0 Bv

calculations of MHD spectra of a realistic magnetized disk model. MHD spectra for weakly magnetized accretion disks contain the
magnetorotational instability and several other branches of discrete unstable modes. We numerically found a variety of toroidal unstable
modes that can affect equipartion accretion disks. Our results are consistent with Noguchi, Tajima, & Matsumoto (2000), who made
an analysis of nonaxisymmetric incompressible modes in accretion disks and found Alfve´nic instabilities for strong magnetic fields.
We generalize their findings by considering all MHD modes. Instabilities at equipartition field strengths are of great interest since it
is believed that magnetized disks launching MHD jets have a thermal pressure of the same order as the magnetic one (Ferreira &
Pelletier 1995). Coppi & Coppi (1998, 2001) have pointed out the importance of anomalous transport produced by nonsingular,
nonaxisymmetric bending modes for the regime of large magnetic energy density. These modes are amongst the instabilities analyzed
here. A complete MHD spectroscopic study for these and other (also two-dimensional) accretion disk equilibria will be presented in
future work (Goedbloed, Belie¨n, & van der Holst 2002). Since the MHD spectrum for disks that are weakly magnetized or at
equipartition field strengths shows this enormous variety of unstable modes, the description of MHD turbulence in magnetized accretion
disks is far from complete. Follow-up nonlinear simulations should reveal the importance of the various modes for triggering and
sustaining MHD turbulence. The analytical framework presented can be of interest for physical mechanisms involving disk instabilities,
such as the “accretion-ejection instability” (Tagger & Pellat 1999) and the hydrodynamical Rossby vortices (Tagger 2001). The study
of instabilities affecting radially stratified MHD jets (Kersale´, Longaretti, & Pelletier 2000; Appl, Lery, & Baty 2000; Kim & Ostriker
2000) is embedded in the present formalism.

This work was done under the Euratom-FOM Association Agreement with financial support from NWO, Euratom, and the European
Community’s Human Potential Programme under contract HPRN-CT-2000-00153, PLATON, also acknowledged by F. C.
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