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Transport of cosmic rays in chaotic magnetic fields
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The transport of charged particles in disorganized magnetic fields is an important issue which concerns the
propagation of cosmic rays of all energies in a variety of astrophysical environments, such as the interplanetary,
interstellar and even extragalactic media, as well as the efficiency of Fermi acceleration processes. We have
performed detailed numerical experiments using Monte Carlo simulations of particle propagation in stochastic
magnetic fields in order to measure the parallel and transverse spatial diffusion coefficients and the pitch angle
scattering time as a function of rigidity and strength of the turbulent magnetic component. We confirm the
extrapolation to high turbulence levels of the scaling predicted by the quasilinear approximation for the
scattering frequency and parallel diffusion coefficient at low rigidity. We show that the widely used Bohm
diffusion coefficient does not provide a satisfactory approximation to diffusion even in the extreme case where
the mean field vanishes. We find that diffusion also takes place for particles with Larmor radii larger than the
coherence length of the turbulence. We argue that transverse diffusion is much more effective than predicted by
the quasilinear approximation, and appears compatible with chaotic magnetic diffusion of the field lines. We
provide numerical estimates of the Kolmogorov length and magnetic line diffusion coefficient as a function of
the level of turbulence. Finally we comment on applications of our results to astrophysical turbulence and the
acceleration of high energy cosmic rays in supernovae remnants, in superbubbles, and in jets and hot spots of
powerful radiogalaxies.
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I. INTRODUCTION

The knowledge of the transport properties of charged p
ticles in turbulent magnetized plasmas is a long-stand
problem, which bears directly on many astrophysical issu
such as the penetration of low-energy cosmic rays in
heliosphere@1#, the propagation and escape of galactic c
mic rays in and out of the interstellar magnetic field@2–4#,
or even the efficiency of Fermi acceleration mechanisms
particular at shocks@3#. The diffusion coefficient transvers
to the mean component of the magnetic field plays a part
larly important role in these issues, but to date, there is
satisfactory description of perpendicular transport. So
studies have built upon or tried to extend the results of
‘‘quasilinear theory’’ @5#, whose validity is limited to very
low level turbulence, i.e., a turbulent component mu
weaker than the uniform magnetic field, and which calcula
the transport coefficients by statistical averages of the
placements perturbed to first order in the inhomogen
field. Other studies have appealed to phenomenological
proximations such as the Bohm estimate for the diffus
coefficient D;r Lv, which corresponds to the assumptio
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that the mean free path for scatteringD/v of a particle of
velocity v, is given by the Larmor radiusr L . This approxi-
mation originates from laboratory experiments which l
Bohm to the empirical formulaDB.0.06eT/B for a plasma
with temperatureT. A theoretical derivation of this formula
was proposed later by Taylor and McNamara@6#, and then
extended to relativistic particles@7#, but no theory of Bohm
diffusion ~relativistic or not! in magnetic irregularities has
been derivedstricto-sensuso far. Therefore it appears tha
important physical and astrophysical issues are yet to be
swered:

How do the transport properties change when the leve
magnetic turbulence is increased? What are the trans
properties when the mean field vanishes? Notably, wha
the relevance of the Bohm scaling?

Even for low level turbulence, transverse space diffus
is not well known. It nevertheless plays a crucial role in t
confinement of cosmic rays in galaxies or other extragala
objects~notably radiogalaxies jets!. Its magnitude is also of
direct relevance to the performance of Fermi acceleratio
perpendicular shocks.

Do subdiffusive and more generally anomalous diffusi
regimes exist? If yes, they are also of importance for Fe
acceleration.

In order to shed light on these issues, we have perform
extensive numerical experiments to determine the pitch an
scattering rate, and the parallel and perpendicular spatial
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fusion coefficients for a wide range of rigidities and turb
lence levels. Our experiments are conducted by Monte C
simulations in which we follow the propagation of a relati
istic test particle in a stochastic magnetic field construc
from three-dimensional Kolmogorov turbulence, and cal
late the diffusion coefficients from the statistical correlatio
along the trajectory. Our study is similar to the recent wo
of Giacalone and Jokipii@8# in which the spatial diffusion
coefficients in two- and three-dimensional magnetostatic
bulence were measured using Monte Carlo simulations
various turbulence levels and rigidities. Our study is howe
more extensive than that of Ref.@8#. In particular we mea-
sure the diffusion coefficients in a broader range of rigiditi
by studying the diffusion of particles with Larmor rad
larger than the coherence length, and in a broader rang
turbulence levels, by going up to pure turbulence in wh
there is no uniform component of the magnetic field. In co
trast, Ref.@8# studies the case of lower-enegy particles a
smaller turbulence levels, with a turbulent magnetic fie
never exceeding the uniform component in strength. We a
study in detail the pitch angle scattering rate, which is
central interest in applications to shock acceleration p
cesses, and study in more detail the issue of transverse
fusion and its relation to the chaotic wandering of field line
Finally we will repeatedly compare our results to Ref.@8#
where there is overlap, which is important since these
merical experiments are delicate.

Among our results, we confirm the extrapolation to hi
turbulence levels of the scalings predicted by the quasilin
theory for the scattering rate and the parallel diffusion co
ficient at low enough rigidity. The perpendicular diffusio
coefficient is shown to follow a law which is quite differen
from the predictions of the quasilinear theory at low rigid
ties. We argue that its behavior is compatible with chao
wandering and diffusion of the magnetic field lines to whi
particles are ‘‘attached.’’ In particular, we demonstrate
chaotic behavior of the magnetic field lines and calculate
associated Kolmogorov length and diffusion coefficient
terms of the turbulence level. We also show that the Bo
diffusion coefficient only holds in a limited range of rigid
ties 0.1&r&1 for pure turbulence, and does not exist wh
the mean field is nonvanishing. In this latter case the Bo
value for the coefficient is only obtained at maximum pit
angle scattering, i.e., for particules with Larmor radius
order of the coherence scale. Finally, we also found that
fusion operates even for particles whose Larmor radii
larger than the coherence length, as far as we have sear
in rigidity ~1.5 decade!. On these scales, the scattering ra
decays as expected, albeit moderately, as the power.27/3
of the rigidity.

Our study is conducted with the following main simplify
ing assumptions:

The magnetic field is composed of a mean homogene
field B0 and an inhomogeneous componentB: B̄5B0
1B(x).

The magnetic disturbances are considered to be st
This assumption is well justified as the waves propagate w
velocities of the order of the Alfve´n velocity v A , smaller
than the velocity of particles;c ~we consider relativistic
02300
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particles!, and the electric force is thus smaller than the ma
netic force by a factorvA /c. The first correction to the theory
is the celebrated second order Fermi process which ca
described by diffusion in momentum space, with diffusi
coefficient G(p);ns p2vA

2 /c2, with p particle momentum,
and ns, the angular scattering frequency, is an outcome
our study.

The magnetic perturbations are distributed according
isotropic turbulence, whose power spectrum is written
terms of Fourier momentumk as: ^B(k)2&}k2b22 for kmin
<k<kmax, zero otherwise, and̂B(k)&50, i.e., random
phases. The exponentb characterizes the properties of th
turbulence, and we will concentrate on the caseb55/3 in
our numerical applications, which describes Kolmogor
turbulence. The smallest turbulence wave number is rela
to the maximum scale of the turbulenceLmax via: kmin
52p/Lmax. This largest scale also corresponds to the co
lation length of the magnetic field to within a factor of ord
unity @see Eq.~13!#.

Our notations are as follows. The quantities we will
interested in are the scattering ratens or scattering timets
[1/ns, defined as the correlation time of the pitch angle,
spatial diffusion coefficient along the mean fieldD i and the
transverse spatial diffusion coefficientD' . These coeffi-
cients are evaluated in terms of turbulence levelh
[^B2&/^B̄2&5^B2&/@Bo

21^B2&#, and rigidity r
[2pr L /Lmax5r Lkmin . For convenience, the Larmor radiu
r L is defined with respect to the total magnetic field:r L

[e/ZeB̄ for a particle with energye and chargeZe. The
Larmor pulsation of a particle of energye is defined, for
convenience, asv̄L[ZeB̄c/e, and the Larmor timetL

[(v̄L)21. We define the scattering function asg(r,h)
[ns/v̄L5tL /ts. When useful, we will denote byvL the
Larmor pulsation in the mean field.

The paper is organized as follows. In Sec. II, we recall
relation between spatial diffusion and the scattering off m
netic disturbances and present the numerical method. In
III, we present our numerical results and discuss the issu
transverse diffusion and the measurement of magnetic ch
characteristics. A discussion with direct astrophysical con
quences of our results is given in Sec. V, and conclusions
offered in Sec. VI. Finally, in Appendix A, we propose
theoretical interpretation of the regimes of diffusion o
served, and in particular of the existence of diffusion f
Larmor radii larger than the maximum scale of turbulenc

II. MOMENTUM SCATTERING
AND SPATIAL DIFFUSION

High energy particles interact with cosmic matter mos
through scattering on the magnetic field which is more
less frozen in the medium. The interaction is elastic in
frame of a magnetic disturbance and it can be considere
elastic in the plasma rest frame to lowest order invA /c, if
the disturbance propagates at small enough velocityvA!c.
With respect to a given direction, chosen as that of the u
form component of the magnetic field if this latter is nonv
nishing, the pitch angle of the particle changes almost r
2-2
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TRANSPORT OF COSMIC RAYS IN CHAOTIC . . . PHYSICAL REVIEW D65 023002
domly if the magnetic field is sufficiently disorganized~this
will be made more precise further on!. Therefore the position
of the particle changes according to a random walk on a t
scale which is longer than the coherence time of the p
angle cosine, and pitch angle scattering is thus respons
for the diffusion of particles. However it is generally b
lieved that transverse diffusion may also occur through w
dering of the magnetic field lines. In this picture, the tran
verse velocity of the particle changes through reson
diffusion as before while the guiding center of the appro
mate helical motion wanders with the magnetic field line
which it is attached, and performs a random walk in t
transverse direction. These notions will be quantified in
forthcoming sections. Our main objective here is indeed
quantify these various contributions to the process of dif
sion.

A. Definitions: Scattering time and diffusion coefficients

We define the pitch anglea with respect to the mean fiel
direction when it exists, otherwise the direction can be a
trarily chosen. The convenient random function is the pi
angle cosine:m(t)[cos(a), and a is a function of time.
Since we assume a static spectrum of magnetic perturbat
the autocorrelation function ofm(t) will become stationary
in the large time limit. It can then be defined as

C~t![^m~ t1t!m~ t !&/^m~ t !2& ~1!

where the average can be performed in three different w
In the original quasilinear theory, this average is taken o
the phases of the magnetic disturbances. In the theor
chaos, the average is performed over the phase space s
of chaotic motions. In practice, and this is what we will u
in the numerical experiment, we assume ergodicity and m
temporal average. Our procedure of calculating average
explicited further below.

The scattering timets can then be defined as the cohe
ence time of the pitch angle cosine:

ts[E
0

`

dtC~t!. ~2!

In particular, if the autocorrelation function falls off expo
nentiallyC(t)5exp(2t/T) thents5T. Turning to the spatial
diffusion coefficientD i , let xi be the coordinate of a particl
along the mean field direction. Then dxi5vm(t)d t with a
constant velocityv ~in our casev5c), since energy is con
served. Consider now a random variationDxi of xi during
the time intervalDt supposed to be larger than the scatter
time ts. One haŝ Dxi&'0, and

^Dxi
2&5v2E

t

t1Dt

d t1E
t

t1Dt

d t2^m~ t1!m~ t2!&. ~3!

Beyond the scattering timets, if the stationary random
processm(t) explores uniformly the interval (21,11), the
space diffusion coefficient parallel to the mean field ste
straightforwardly from its definition, Eq.~3! and Eq.~2!:
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D i[
^Dxi

2&
2Dt

5
1

3
v2ts. ~4!

Here as well the average can be made according to on
the three ways explained above. The main goal of the co
putation is then to determine the dependence ofts, or the
scattering functiong, in terms of the rigidityr and the tur-
bulence levelh. The theoretical result is known in the re
gime of weak turbulence@5#, if the correlation timetc of the
force suffered by the particle is much smaller than the sc
tering timets. To make it more precise, particles under
resonances with the MHD modes such thatkivm6vL50.
The correlation time is related to the width of the resonan
in the mode spectrum, such that

tc
215D~kivm6vL!5vumuDki5vL

Dki

ki
~5!

whereDki denotes the spectrum width, in the parallel dire
tion. Since ts

21;hvL , tc!ts is equivalent to h
!Dki /ki . In this case the memory of the initial pitch ang
can even be kept and the scattering functiong
;h(rumu)b21. However diffusion coefficients calculated o
time scales larger thants must be averaged overm.

Due to rotation invariance around the mean field dire
tion, there is a single transverse diffusion coefficient~when
diffusion occurs!, given by

D'[
^Dx'

2 &
2Dt

, ~6!

where Dx' denotes the displacement perpendicular to
mean field during the time intervalDt. In weak turbulence
theory (h!1), the gyro-phasec of the particle is only
weakly perturbed by the disorganized component of the fi
and ċ.vL , where the gyropulsationvL is determined with
respect to the mean field. The transverse velocity can
approximated by

v'.v sina~ t !@e1 cosc2sgn~q!e2 sinc#, ~7!

whereq denotes the charge of the particle, and we implici
assumed the mean field to lie along the directione3. The
pitch angle sine sina(t) varies on the time scalets, which is
much longer than the Larmor time in the weak turbulen
regime. The time correlation function of the pitch angle
obviously the same as that of the cosines since^cos(a1
1a2)&50, hence ^sina1 sina2&5^cosa1 cosa2&. Therefore
the transverse diffusion coefficient reads

D'5
1

3
v2E

0

`

dtC~t!cos~vLt!. ~8!

Assuming that the correlation functionC(t) decays expo-
nentially on the characteristic timets, one finally obtains a
result similar to the so-called classical diffusion that read
2-3
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D'5
1

3
v2

ts

11~vL ts!
2

. ~9!

This transverse diffusion based on pitch angle scattering o
leads to the ratio

D'

D i
5

1

11~l i /r L!2
, ~10!

wherel i[3D i /v is the mean free path of a particle alon
the mean magnetic field. This relation can also be obtai
by treating the magnetic disturbances as hard sphere sc
ing centers with weak or strong turbulence. It is also a re
of the study of Ref.@9#, which estimate phenomenologic
diffusion coefficients by using well-motivated assumptio
for the velocity autocorrelation functions of the particle orb
Finally, since (vLts)

2@1 in the weak turbulence regime, on
expectsD'!D i whenh!1. However the transverse diffu
sion may turn out to be larger than predicted by quasilin
theory, even for moderate turbulence. In particular note
Eq. ~4! for the parallel diffusion coefficient rests on the so
assumption thatC(t) vanishes on timescales longer thants,
while the quasilinear result for the transverse diffusion co
ficient, Eq.~9!, assumes that the particle orbit is only weak
perturbed and the timescale of variation of the pitch angl
much longer than the Larmor time, i.e., that the level
turbulenceh!1. We refer to this result as a prediction
quasilinear theory; it neglects the diffusion of the guide c
ter carrying field line and the associated process of cha
magnetic diffusion which has been analyzed by Jokipii a
Parker@10#, and to which we will come back in the follow
ing section. Finally in all cases one should obtainD'→D i
whenh→1, since the mean field vanishes in this limit a
there is no preferred direction anymore.

B. Numerical simulations

In order to evaluate the transport coefficients, we follo
the propagation of particles in stochastic magnetic fields
integrating the standard equation of motion~Lorentz force!,
and measure the statistical quantities of interest to us, nam
ns51/ts, D i , andD' , using the estimators defined respe
tively in Eqs.~2!,~4!,~6!. Strictly speaking, the averages co
tained in these expressions should be taken over the ph
of the magnetic inhomogeneities. In practice however,
may as well take these averages as follows. For a givenDt
@using the notations of Eqs.~4!,~6!#, a time t is picked at
random over the trajectory, and the correlation between
positions at timest and t1Dt is recorded; this operation i
repeated many times and the average is kept. This latte
then further averaged over a population of particles with r
dom initial positions, and then over an ensemble of magn
field realizations with random phases. In practice, we pro
gate 20–50 particles, measure the correlations at 50
10000 different times along the trajectory of each partic
and use a few magnetic realizations. This procedure all
to reach a sufficiently high signal-to-noise ratio in the sim
lation for a moderate computer time, as indeed setting up
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magnetic field and propagating a particle is much m
costly than taking averages along the trajectory.

In principle one could as well take the average^Dx2&/Dt
as the variance of the displacement at timeDt over a popu-
lation of particles originally concentrated at the origin, as
Ref. @8#. However this method requires to follow the traje
tory of a large number of particles*103 in order to achieve
a reasonable signal-to-noise ratio. The method we emp
which measures the correlations along the trajectory of e
particle, before averaging over a population of particles
less costly in computer time~but requires much more
memory!. Nevertheless, we also checked~and found! that the
method which measures the variance of the displacem
gave results in agreement with our method within the er
attached to the small number of particles propagated.

The magnetic field can be constructed in two differe
ways which both present pros and cons. The first met
uses fast-Fourier transform~FFT! algorithms to set up the
magnetic field on a discrete grid in configuration space, st
ing from the magnetic field defined through its power sp
trum in Fourier space, i.e.

B~x![k(
n

e~n!A~n!expF2ipn"x

Lmax
G . ~11!

In this equation,n is the tridimensional wave number vecto
with integer coordinates taking values between 1 a
kmax/2kmin , e(n) is a unit vector orthogonal ton ~this ensures
“B50), A(n) is the amplitude of the field component, an
is defined such that̂A(n)&50 and ^A(n)A!(n)&5k2b22,
where the average concerns the phases of the magnetic
Finally, k is a numerical prefactor which ensures the corr
normalization of the inhomogenous magnetic compon
with respect to the mean field, by using the following ergod
approximation tô B2&:

^B2&5
1

VE dxB2~x!, ~12!

and as beforeh5^B2&/(B0
21^B2&). In practice, the field

components are calculated at each vertexxi of a discrete grid
in configuration space beforehand. The boundary conditi
are periodic with periodLmax, and the fundamental cubi
cell size isLmax/Ng , where Ng represents the number o
wave number modes along one direction. One thus h
kmax/kmin5Lmax/Lmin5Ng/2, where the factor 2 comes from
the fact that one must consider both negative and positivk
modes to respect the hermiticity ofB(k). In our simulation,
we typically useNg5256 and in some casesNg5512 which
gives us a dynamic range of two orders of magnitude.

During the propagation of particles, it is of course nec
sary to know the magnetic field at any pointx for the inte-
gration of the equations of motion. Our numerical code c
culates the valueB(x) either by trilinear interpolation
between the known values of the field components on th
vertices of the cell to whichx belongs, or by taking the value
of B at the vertex closest tox, which amounts to assuming
constantB in cells of sizeLmax/Ng centered on each vertex
While the former method does not respect“B50, the latter
2-4
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implies a discontinuous magnetic field on each cubic c
face. We will show in the following that the results obtain
by these methods differ only when scales smaller than
cell size are concerned, as expected.

A second algorithm for computing the magnetic field h
been proposed by Giacalone & Jokipii~GJ! @8# and calcu-
lates the magnetic field as a sum over plane wave mo
The expression definingB(x) is very similar to Eq.~11!
above, except thatn needs not have integral coordinates an
more, as fast-Fourier transform methods are not used.
deed, one does not calculate the field on a discrete grid
forehand, but its values are calculated where and w
needed during the propagation directly from the sum o
plane waves. Also the sum is not tridimensional, but o
dimensional; the wave numbers directions are drawn at
dom, and the amplitudeA(k)}k2b to account for phase
space volume. In practice, it is convenient to have logar
mic spacing of thek modes betweenkmin andkmax.

One main advantage of the GJ method is that there is
restriction in dynamic range due to memory usage, and c
sequentlykmax/kmin can be as large as required. Howev
one is limited in terms of computer usage time since it
expensive to perform the sum over the wave number mo
at each point of the trajectory if the number of modesNpw
becomes significant. In practice,Npw5500 is a strict upper
limit for our applications@11#, and even withNpw5200 the
calculation is already much slower than a similar calculat
with the above FFT algorithm.

The number of modes is important as it controls the e
ciency of diffusion, since pitch angle scattering procee
mainly through resonance of the particle momentum on
magnetic field modes. In quasilinear theory the resona
condition readsrmki56kmin , whereki is the component of
the wave number along the mean magnetic field direct
The FFT and GJ algorithm share a similar number of re
nance modes in this limith!1. However for each resonan
ki the FFT algorithm hasNg

2;1042105 transverse compo
nents to be compared with one for the GJ algorithm. O
thus expects that at higher turbulence levels, diffusion sho
be more effective in the FFT algorithm due to the mu
larger total number of modes than in the GJ algorithm. F
thermore, in order to preserve a correct spacing of mode
the GJ algorithm, one cannot indefinitely increase the
namic rangekmax/kmin sinceNpw is fixed for practical rea-
sons, i.e., computer time.

However the FFT algorithm suffers from other limitation
~apart from the limitation in dynamic range!: the interpola-
tion of B on scales smaller than the cell size, and the p
odicity on the scaleLmax. These limitations are not prese
in the GJ algorithm, and imply that the results of the F
method obtained for Larmor radii much smaller than the c
size, i.e.,r!1/Ng , or much bigger than the periodicity scal
r@1, cannot be trusted, since these regimes are likely to
dominated by systematic effects related to the discretene
to the periodicity.

Overall both methods appear complementary to e
other, and we use them in turn to compare and discuss
robustness of our numerical results with respect to the
sumptions made.
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III. RESULTS AND DISCUSSION

A. Pitch angle scattering and parallel diffusion

The first numerical investigation to perform is the se
correlation function of the pitch angle cosine. The behav
of this function is shown in Fig. 1 vs time intervalt for
various levels of turbulenceh. Two bumps are observed a
one and two Larmor periods. These bumps are observe
long as the regular magnetic fieldBo exists. Since the deco
rrelation times forh,1 are larger than one Larmor period
the Larmor motions are not completely disorganized a
contribute to the correlation function with some harmon
generated by nonlinearities. The inflexion of the function
dicates that it behaves ase2at2

ast→0 and then decrease
exponentially ine2nt ast→`. Thus the determination ofts
andns by a numerical integration of the correlation functio
is accurate.

In Fig. 2 we show the scattering frequencyg(h,r)
5ns/v̄L , which is the main quantity of interest for evalua
ing the transport coefficients. This figure shows several
teresting features which deserve further comments. Firs
all, one finds that both methods for calculating the magne
field, i.e., FFT and GJ, agree well within the range of valid
of the former method, namely forrmin&r&rmax, where
rmin5kmin /kmax, and rmax52p. These two limiting rigidi-
ties correspond to Larmor radii of order of the cell size a
of the maximum scale of turbulence respectively, and re
from the discreteness and periodicity of the magnetic fi
grid, as explained in Sec. II B. One finds that the scatter
function behaves as a power law with different slopes
pending on the rigidity and turbulence level. Forr&rmin , it
must be emphasized that the results cannot be trusted fo
FFT results, i.e., all symbols except filled circles, and t
change of slope may be artificial. Forh,1 and r,1, it
appears thatg(h,r)}hr2/3, in accordance with the quasilin
ear prediction since 2/35b21.

For r.1, one findsg(h,r)}hr24/3, an unexpected re
sult, since the resonance conditions cannot be satisfie

FIG. 1. Self-correlation function of the pitch angle cosine sho
as a function of timet ~in units of Larmor timetL51/vL) for
various rigidityr50.072,0.12,0.19,0.32,0.52,0.85 and forh50.1.
2-5
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FABIEN CASSE, MARTIN LEMOINE, AND GUY PELLETIER PHYSICAL REVIEW D65 023002
these high rigidities, and the quasi-linear theory thus pred
a sudden drop of the scattering frequency atr.1. In Appen-
dix A, we provide a first theoretical explanation of this res
by expansion of the particle trajectory in the random d
placement and statistical averaging of a non-perturbative
summation of an infinity of graphs of correlations along t
trajectory.

For h50.99 andr&1 one notes a flattening of the sca
tering function with recovery of the exponent 2/3 power la
at smaller rigidities. This flattening is definitely present f
h51 ~no mean component of the magnetic field!, and cor-
respond to the phenomenological Bohm diffusion regime
will be seen further below; however, it only extends ov
slightly less than a decade in rigidity for 0.1&r&1, even
though for that simulation the dynamic range was very la
kmax/kmin5104. At maximum pitch angle scattering, i.e
whenr.1 andh.1, the scattering functiong.0.5, i.e., the
pitch angle scattering timets is of order 2 Larmor timestL .
It should be noted that we define the rigidity with respect
the maximum scale of turbulence, which strictly speak
does not coincide with the coherence scalel coh of the turbu-
lent magnetic field. In effect, the spatial correlation functi
of the turbulent component is defined as

^B~x1r !B~x!&5^B2&
E dk

sin~kr !

kr
S~k!

E dkS~k!

, ~13!

FIG. 2. The scattering functiong(h,r)5n s/v̄L as a function of
rigidity r. The symbols correspond to the measurements m
through our Monte Carlo experiments and correspond to var
turbulence levels, as indicated. These results have been obt
using the FFT numerical method~see text!, except for the filled
circles which correspond to the GJ algorithm. The vertical das
lines indicate the range of validity of our FFT algorithm~i.e., all
symbols except filled circles!, delimited byrmin5kmin /kmax, and
rmax52p, which correspond respectively to Larmor radiir L

5L max/pNg (1/p cell size! and r L5L max. The simulation forh
51 shown by filled circles has been obtained with a much lar
dynamic range than the others, i.e.,kmax/kmin5104. Finally, the
dotted lines correspond to power law approximations with slo
2/3 and24/3. See text for comments.
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with S(k)[k2^B2(k)& the power spectrum. This integra
cannot be integrated analytically for a power-law spectr
S(k)}k2b but one can check numerically that the maximu
of the correlation function occurs at scalel coh
.0.77Lmax/2p.

Turning to the spatial diffusion coefficients, it is interes
ing to plot the statistical estimators forD i andD' given by
Eqs. ~4!,~6! as a function of time for different turbulenc
levels, and the result is shown in Fig. 3.

This figure illustrates the transition from the regime
which the particle orbit is weakly perturbed and memory
the initial conditions is kept to the regime in which th
memory is lost and the particle diffuse,^Dx2&/Dt'constant.
The level of this plateau gives the magnitude of the diffus
coefficient; Fig. 3 also gives an idea of the uncertainty in o
measurement of diffusion coefficients. Finally, this figu
also confirms the expected resultsD i@D' when h!1 and
D i /D'→1 ash→1. It should be pointed out that the initia
value of the pitch angle cosine wasm51/A2 in all simula-
tions; we have checked that our results are insensitive to
value as long as the turbulence levelh*0.1, as expected.

In Fig. 4, we show the behavior of the parallel diffusio
coefficient as a function of rigidity for various turbulenc
levels. The dotted lines correspond to the approximation
D i obtained from the calculation ofts using Eq.~4!, and the
agreement appears excellent. This study does not confirm
existence of a Bohm scaling. More precisely, the Bohm d
fusion coefficientDB}r Lv only applies ath51 in the range
0.1&r&1, in agreement with the similar conclusion for th
scattering function. In all other cases the quasi-linear pre
tion is verified, i.e.,D i}r1/3 for r,1. We also found that a
diffusion regime exists for rigidities greater than the upp

e
s
ed

d

r

s

FIG. 3. Behavior of the averages^Dx2&/Dt in units of r Lc, as a
function of the time intervalDt in units of tL , for various turbu-
lence levels (r50.848), and for both the transverse displacem
~lower thin line curves! and parallel displacement~upper thick
curves!. One sees the transition from the weakly perturbed pro
gation regime ^Dx2&}Dt2 to the diffusion regime^Dx2&}Dt,
which appears here as a plateau. The transition duration depen
the turbulence level, and is of order ofts the scattering time. The
diffusion coefficients are given by the levels of the plateau. Ob
ously, D i@D' for h,1 and the two meet in the limith→1, as
expected.
2-6
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TRANSPORT OF COSMIC RAYS IN CHAOTIC . . . PHYSICAL REVIEW D65 023002
bound of the resonance region, i.e.,r.1, for as far as we
have searched, or about 1.5 decade. In this regimer.1,
D i}r7/3, for all values ofh.

B. The issue of transverse diffusion

In Fig. 5, we plot the behavior of the transverse diffusi
coefficient as a function of rigidity for various turbulenc
levels. It is useful to plot also the quantity (D' /D i)

1/2 as
shown in Fig. 6. Indeed, the noise of the simulation is th
reduced and this figure allows to compare directly the po
law behaviors ofD' andD i .

This figure indeed reveals a clear trend. For allh, the
ratio D' /D i is independent of rigidity forr,1, and scales
asr22 for r.1. A similar regime has been found by Giac
lone and Jokipii@8# for r,1, albeit with slightly lower val-
ues than ours. This constancy is interpreted in the follow
as the signature of diffusion due to the chaotic wandering
the guide center carrying field lines. The importance of
guiding center diffusion was pointed out by Jokipii@5# as

FIG. 4. The parallel diffusion coefficientD i in units of r Lc as a
function of rigidity for various turbulence levels. The symbols a
vertical dashed lines are as in Fig. 2. The dotted lines are obta
from the pitch angle scattering rate, using Eq.~4!.

FIG. 5. The transverse diffusion coefficient as a function
rigidity for various turbulence levels, with the same notations
the symbols as in Fig. 4.
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early as 1966 in order to correct the quasilinear result; ho
ever this derivation does not apply to high turbulence leve
Finally, the ratioD' /D i converges as expected to 1 for allr
when h→1. However it is interesting to note that even
h50.99, there remains the power law dependence for
.1, D' /D i}r22.

We have found evidence for subdiffusive regimes^Dx2&
}Dtm, with m,1, at low enough rigiditiesr&1022 and for
h,1. On analytical grounds one expectsm51/2, corre-
sponding to the so-called process of compound diffus
@12,13#, and we have found values ofm close to this value
indeed. However we have not been able to investigate
detail this issue, as it is very consuming in terms of compu
time. In effect, this can be studied only using the GJ alg
rithm, since it takes place at low rigidities outside the d
namic range of the FFT algorithm. We have thus decided
postpone the study of these anomalous regimes to a su
quent publication.

C. Characterization of magnetic chaos

When the magnetic field is a superposition of a mean fi
and an irregular component depending on all three spa
coordinates, the field line system generically exhibits chao
solutions. For instance it is sufficient to use a distribution
Fourier modes following a power law in wavenumber to o
tain a chaotic system. However a two-dimensional field c
not have chaotic field lines, and a one-dimensional sys
cannot produce transverse diffusion, as the particles are
fined in a flux tube by conservation of the adiabatic invaria
@14#. An example of this phenomenon is shown in Fig. 7
which we show the transverse wandering of a particle
three-dimensional and one-dimensional turbulence.

In a three-dimensional chaotic system the separation
tween two initially adjacent field lines first increases exp

ed

f
r

FIG. 6. The square root ofD' /D i as a function of rigidity for
various values ofh. The notations of symbols are as indicated a
as in previous figures. The dotted curves overlaid on this fig
correspond to the classical scattering result given by Eq.~10!, and
correspond from bottom to top to the represented values ofh in
increasing order except forh51. These models account marginal
for the numerical results for high rigidity particlesr*1 and small
turbulence levelsh&0.5, but diverge significantly from the exper
ment in other regimes.
2-7
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FABIEN CASSE, MARTIN LEMOINE, AND GUY PELLETIER PHYSICAL REVIEW D65 023002
nentially}exp(s/lK) as a function of the abscissas along the
field line, with characteristic Lyapunov exponentl K , also
called the Kolmogorov length. When the separation has
come larger than the coherence length of the magnetic fi
it behaves diffusively with magnetic diffusion coefficie
Dm[^Dr 2&/2Ds, whereDr denotes the separation betwe
the two field lines.

Our numerical computation of the field lines clearly d
plays this two-step behavior. In Fig. 8, we plotted the se
ration squared between two field lines as a function of
curvilinear abscissa forh50.08. These calculations hav
been obtained by integrating the equations defining the fi
lines, namely dx/B̄x5dy/B̄y5dz/B̄z , instead of integrating
the particle equation of motion. Figure 8 clearly shows t

FIG. 7. Transverse displacement of particles in thr
dimensional chaotic turbulence~thick line! and in one-dimensiona
non-chaotic turbulence~thin line!. In both cases,h50.5, and for
one-dimensional turbulence, the inhomogeneous componen
taken to depend on the coordinatez, with the homogeneous mag
netic field component lying along thez axis. Note the difference in
behavior: in one-dimensional turbulence, the particle is confine
a flux tube and does not diffuse.

FIG. 8. The square of the separation distance between two
lines as a function of the curvilinear abscissa along the field l
The exponential divergence followed by the diffusion regime
clearly identified. The transition between these two regimes oc
at s;Lmax.
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two-step behavior and confirms that the transition from o
regime to the other occurs whens;Lmax.

This calculation allows us to measure the two lengthsl K
andDm with a relatively good accuracy. The results are
ported as function ofh in Fig. 9.

The effective transverse diffusion of particles in a chao
magnetic field has been derived by Rechester and Ro
bluth @15#. Here we extend their argument by assuming t
the primary transverse diffusion is anomalous~sub- or super-
diffusive!. The problem can be stated as follows. Aftern
scattering times, parallel diffusion leads to a diffusion in c
vilinear abscissâDsn

2&52D itsn, whereas the transverse pr
mary variation causes transverse displacement such
^Dx'

2 &;r L
2na, with a51 for normal diffusion, anda,1 for

subdiffusion. Because of field line exponential divergen
until the separation is of order the correlation length, s
after nc scatterings, the transverse displacement is ampli
exponentially by a factore2sn / l K with sn5A2D itsn. After nc
scatterings (nc@1), an effective transverse diffusion coeffi
cient can then be estimated as

D'5
^Dx'

2 &
2Ds

Ds

Dt
Unc

. ~14!

Because the particles almost follow the field lines, the fi
factor can be approximated by the magnetic diffusion co
ficient Dm, and one gets

D'5Dm

v

A3nc/2
. ~15!

The numbernc is obtained by equating the separation d
tance and the transverse correlation length of the field li
l' ~in our casel'.Lmax):

r Lnc
a/2expSA2D itsnc

l K
D 5 l' ~16!

which leads to

-

is

to

ld
.

rs

FIG. 9. Kolmogorov length and magnetic diffusion coefficie
as functions ofh. The two lengths are normalized to the large
scale of turbulenceLmax.
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Anc.
3

2

l K

l̄
logF l'

r L
S l̄

l K
D aG , ~17!

where l̄ [vts ~the scattering length!. The main result is tha
magnetic chaos amplifies the transverse diffusion in suc
way that it becomes a sizable fraction of the parallel dif
sion:

D'5
2Dm

l K logF l'
r L

S l̄

l K
D aG D i . ~18!

As can be seen, the primary subdiffusion does not refrain
effective diffusion due to chaos. Whena51 ~nonanomalous
primary diffusion!, the logarithmic factor reads
. log(l' /glK), with g the scattering function as before.

Finally note that the above regime of diffusion applies
late times afternc scattering times. The intermediate regim
for n scattering times, withn,nc , leads to subdiffusive mo
tion ~compound diffusion!, with Dx'

2 }Dt1/2, see for instance
Ref. @13#. We have found evidence for such a regime, bu
detailed study of its behavior lies beyond the present w
and is defered to a later study.

No theory gives the ratioDm/ l K , except for some toy
models such as the Chirikov-Taylor mapping@17#. However
our numerical experiment can provide a fairly accurate e
mate of this ratio. In particular we find that the Kolmogoro
length l K}Lmaxh

20.960.1 and that the magnetic diffusion co
efficient Dm}Lmaxh

1.460.1 as long ash<0.5 @see Fig. 9#.
Beyond this limit, our calculations ofDM and l K do not
provide accurate estimates of these lengths, especially fo
Kolmogorov length which loses its physical meaning wh
h reaches unity. Therefore bearing in mind that the two d
fusion coefficients become the same ash→1, we conjecture
that the result should be

D'5h2.360.2D i ~19!

whenh<0.5. This non perturbative result would be in agre
ment with the perturbative result obtained by Chuvilgin a
Ptuskin @16# for small amplitude~written A) large scale
varying fields, the ratio between the two coefficients be
proportional toA4.

Finally, it is important to note that our numerical resu
for D' /D i shown in Fig. 6 have been obtained indepe
dently of the above magnetic diffusion law. We find,
agreement with the above relation, thatD' /D i is indepen-
dent ofr for r,1, and thatD' /D i}h2.3 provides a good fit
to the scaling observed ath,1. However the numerica
prefactor in this relation is rather of order.0.2 for h,1,
whereas it should be.1 if the extrapolation could be take
up toh51. Nevertheless, the above provides solid evide
in favor of a dominant contribution of magnetic diffusion
the process of transverse diffusion.
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IV. SOME APPLICATIONS

In this section, we offer revised estimates of the maxim
energy that can be attained by Fermi acceleration mec
nisms by comparing the acceleration time and the time
escape of cosmic rays outside of the accelerating region
ing the results obtained in the previous section. We first c
sider the case of galactic supernovae remnants~SNR! and
so-called superbubbles, and then turn to the case of jet
extragalactic sources.

A. Supernovae remnants and superbubbles

The lagging questions of the production of cosmic rays
supernovae remnants has been recently reviewed in
@18#. One of the major problems in accounting for the obs
vational data is that the maximum energy achieved by
Fermi process in the SNR shock is well below the so-cal
‘‘knee’’ range 1014–1017 eV. If one uses the Bohm approx
mation to the diffusion coefficient, there is hope to reach
knee energy with sufficient efficiency to expect significa
g-ray emission resulting fromp0 decay generated bypp
collisions. The lack of detection of these gamma rays@19# or
their marginal detection at best, ruined these optimistic
sumptions. The Fermi acceleration at a shock of velocityus

is characterized by an acceleration time scaletF1.2D/us
2 .

In most of the shock region,D.D i hence tF1.ts/bs
2

.tL /(gbs
2), wherebs[us /c. The maximum energy is lim-

ited by the age of the supernovae remnants, and one
obtains

eSNR;1.831014ZgS bs

1022D 2S t

300 yrD
2S B

1 mGD eV.

~20!

This result differs from@18# only by the factor 3g. This
factor is close to unity when the Bohm scaling applies; b
as we have found in Sec. III, in factg}r2/3. Strictly speaking
this scaling is valid for Kolmogorov turbulence, and one e
pects the turbulent magnetic field downstream to differ fro
isotropic three-dimensional Kolmogorov, but the above sc
ing serves well for order of magnitude estimates. Moreov
r!1 for Larmor radii smaller than turbulence correlatio
length which could be the case even for the most energ
particles. The Bohm approximation thus appears very o
mistic.

Superbubbles correspond to huge cavities created
;100 SNR shock waves built around massive stars asso
tions. The size of these regions can be a sizable fractio
the galaxy disk thicknessh.120 pc. In effect, a typical su
perbubble radius can be estimated as@20#

RSB~ t !.66 pcS L

1038 erg/s
D 1/5S n0

1 cm23D 21/8

tMyr
3/5 ,

~21!

whereL measures the mechanical luminosity of the OB-st
association,n0 the particle density of the surrounding inte
stellar medium.1 cm23, and tMyr;30 is the superbubble
2-9
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lifetime in units of Myr. The bubble plasma is more dilu
than the interstellar medium by at least two orders of m
nitude and thus the Alfve´n velocity is much greater. This
density reads@20#

nSB.1.631022 cm23 L38
6/35n0

19/35tMyr
222/35k0

2/7, ~22!

where k0 is a number of order unity@20#. The bubble is
traversed by many shock fronts propagating with velocity
order or greater than the Alfve´n velocity; a second order typ
of Fermi acceleration is thus at work. Its acceleration ti
scale is given bytF2;(c/VA)2ts5(c/VA)2tL /g. The maxi-
mal energy is limited by escape of the particles, which
governed by the diffusion across the galaxy disk thickn
for the most energetic. A strict lower limit to the time o
escapetesc can be obtained by using the parallel diffusio
coefficient, sincetesc}1/D with D the diffusion coefficient.
Transverse diffusion would improve the confinement tim
and thus lead to a higher maximal energy; however
should then take into account the fact that magnetic li
come out of the galaxy disk and unfold in the halo. Let
consider the lower estimate:

tesc5
h2

2D i
5

3h2

2c2tL

g. ~23!

The maximal energy for acceleration by second order Fe
process in superbubbles then corresponds totesc.tF2, and
reads

eSB.431012 eVgZS B

1 mGD 2

tMyr
32/35, ~24!

where we usedno51 cm23. Therefore the second orde
Fermi process in superbubbles might cover the knee ra
with slightly optimistic assumptions, since the magnetic fie
intensity can easily reach 10mG in these super-bubbles, an
tMyr;30. Moreover, at that maximal energy the rigidi
reaches unity and thereforeg;0.5h, smaller but close to
unity. At this point it is useful to recall that the confineme
limiting energy of cosmic rays in the galaxy obtained
equating the Larmor radius with the thicknessh is of order
Z31017 eV.

B. Extragalactic jets and hot spots

Extragalactic jets emanating from active galactic nuc
have been considered as possible sources of ultrahigh en
cosmic rays withE*1018 eV because the confinement lim
in a jet of radiusRj and bulk Lorentz factorG is

ecl51021 eVZGS B

1 GD S Rj

1 pcD ~25!

and for the powerful, strongly collimated and with termin
hot spots FR2 jets, the productBRj is roughly uniform in the
jet and is estimated as
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BRj;0.1 G pcS M*
108M (

D 1/2

, ~26!

where M* is the mass of the central black hole. Indee
asymptotically, the magnetic field at the edge of the jet
dominated by its toroidal component; therefore the prod
BRj is governed by the current generated by the central
gine along the axis. It slightly decreases along the jet,
cause the return current progressively establishes thro
wrapped lines off axis like butterfly wings@21,22#. These jets
are launched if the magnetic field intensity is close to eq
partition with the radiation pressure in the central region, i
within 10 gravitational radii. This corresponds toB
;1 kG(M* /108M ()21/2 within 10 a.u. (M* /108M ().
Thus the performance of the jets as ultrahigh energy~UHE!
cosmic rays accelerators tightly depends on the nature of
central engine. At the base of the jet,B.100 mG for Rj
51 pc is a reasonable number. In the hot spots of the F
jets such as those of Cygnus A,B.1024 G for a region of
size ;1 kpc. Thus withG510, the confinement condition
in jets rules out the possibility of generating ultrahigh ener
cosmic rays of energies larger than;1020 eV. In the case of
FR1 jets, which are less powerful, less collimated, and w
out hot spots, the limiting energy is even smaller since
productBRj , although not well known, is very likely lower

As usual, the escape of the highest energy cosmic ray
governed by diffusion across the jet and

tesc5
Rj

2

2D'

.
3

2

Rj
2

h2.3c2

g

tL
, ~27!

where we have use our previous result that perpendic
diffusion is governed by magnetic diffusion of the field lin
and D';0.2h2.3D i . One thus finds that indeed most hig
energy cosmic rays escape before reaching the end of the
since

tesc.23104 yr
gZ

h2.3S Rj

1 pcD
2S B

1 GD S e

1018 eV
D 21

,

~28!

to be compared with a travel time of.1 Myr to travel 300
kpc, the typical length of extragalactic jets. Here as well
maximal energy for Fermi acceleration is obtained by equ
ing tesc with the acceleration timescale for acceleration
shocks moving at speedbsc. This gives

emax.bs

g

h1.15
ecl . ~29!

With the plausible assumption of Kolmogorov turbulenc
g;0.5hr2/3, we finally obtain the maximal energy as a fra
tion bs

3 of the confinement energy, the estimate being wea
sensitive to the turbulence level:

emax.1021 eVbs
3ZGS B

1 GD S Rj

1 pcD . ~30!
2-10
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Centaurus A is a well-known example of active galac
nucleus, actually the closest to us~distance 3.4 Mpc!, which
displays FR1 nonrelativistic jets moving at speeds;5
3103 km/s. The jets have both radio and x-ray band s
chrotron emission with luminosityLX.1039 erg/s extending
over several kpc. They have been studied in detail with h
resolution interferometry@23# and recently with the Chandr
x-ray satellite@24#. The radio knots and the x-ray knots a
identical in the inner jet. The minimum pressure magne
field is Beq.60 mG and the maximum Lorentz factor of th
electrons gmax.83107. The inner jet has radiusRj
.30 pc and a constant opening angle of 6 °. The prod
BRj;1.831023 G pc is clearly too low to produce ultra
high energy cosmic rays. In any case it has been shown
even if Centaurus A could accelerate cosmic rays to the h
est energies observed;1020 eV, their transport to Earth
affected by diffusion according to the rules derived in th
paper would lead to strong energy losses by increased tr
distance and anisotropy incompatible with present obse
tions @25#.

In the hot spots, the escape is again dominated by d
sion at high energies, but parallel diffusion is more like
unless there is no ordered field. For a hot spot of sizeRhs
;a few kpc and magnetic field intensityB;1024 G as in
Cygnus A, the confinement limit is

ecl.1020 eVZS B

1024 G
D S Rhs

1 kpcD ~31!

and the maximum energy achievable with a nonrelativis
shock is

emax.bsgecl . ~32!

The most extreme energy that can be obtained is when
turbulence is high enough that no organised field is set u
the hot spot, and the shock is midly relativisticbs.1. But
synchrotron emission of hot spots, like those of Cygnus
does not favor this view. Indeed the synchrotron emission
relativistic electrons cuts off in the infrared range. Since
electron of Lorentz factorg synchrotron radiates around
frequencynsyn.115(B'/1024 G)g2 Hz, an observationa
upper bound on the electron Lorentz factor is

gmax
e .106S B

1024 G
D 21/2

, ~33!

and the corresponding rigidity is

re[
2pr L

Rhs
.0.331027S B

1024 G
D 23/2S Rhs

1 kpcD
21

.

~34!

Now this maximum electron energy is obtained by the sa
Fermi acceleration process, limited by synchrotron loss
We recall that the characteristic time for a synchrotron rad
tive process of an electron of energye5gmec

2 is
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tsyn5
6moe

4sTcB2g2
~35!

wheresT is the Thomson cross section andmo the magnetic
permittivity of vacuum. By equating this loss time with th
first-order Fermi acceleration time scale, we obtain the ma
mum Lorentz factor that can be achieved

gmax
e .1010bsg

1/2S B

1024 G
D 21/2

, ~36!

and the scattering function is calculated for the maxim
rigidity re . Therefore, assuming again Kolmogorov turb
lence with g(re).0.5hre

2/3, we obtain the approximate
value of the turbulence level by equating the two expressi
for gmax

e :

h.0.2S bs

0.1D
22S B

1024 G
D S Rhs

1 kpcD
2/3

. ~37!

Sincebs.0.1 is very likely, the required turbulence level
rather low. This, in turn, reduces drastically the maximu
energy of cosmic ray acceleration, using Eq.~32!, Eq. ~31!
and knowing thatg;hrb21:

emax.~hbs!
1/(22b)ZS B

1024 G
D S Rhs

1 kpcD1020 eV,

~38!

where we explicited the scaling withb the exponent of the
power spectrum of magnetic fluctuations; however note t
the estimate ofh must be changed withb. For Kolmogorov
turbulence,b55/3 and using the upper bound onh Eq. ~37!
above, the prefactor is of order 1026(bs/0.1)23, and accel-
eration is not sufficient to account for the highest ene
cosmic rays by several orders of magnitude.

This limit cannot be circumvented easily, since it is s
verely constrained by the cut-off frequency of the electro
synchrotron emission. The only parameter that could
modified without affecting this cut-off frequency is the tu
bulence indexb. If one considers Kraichnan turbulenceb
53/2 instead of Kolmogorov turbulence, the prefact
(bsh)3 is changed into (bsh)2, but h itself is lowered by a
factor 10 due to the modified dependence ofg on re . Fur-
thermore if hot spots were to radiate synchrotron emissio
x rays, this would increasegmax

e by a factor 10 only, and
would not affect drastically our conclusions. Finally th
numbers considered above are consistent with recent ob
vations of the Cygnus A hot spots by Chandra@26#, which
give an accurate measurement of the magnetic field inten
;1.531024 G to within a few tens of percents, as obtain
by the ratio of the synchrotron-self Compton luminosity ov
the synchrotron luminosity, a value which is furthermo
close to the equipartition value if there are no protons. Th
measurements also confirm model dependent estimates
posed in 1986@27#. Finally, as an aside, the same reason
allows to estimate the level of turbulence required to get
2-11
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x-ray emission in Centaurus A: withgmax.83107, re

.1.231024, andh.1022/bs
2 .

V. CONCLUSION

Let us first summarize the results we have obtained.
scattering functiong has been found to follow the scalin
predicted by quasilinear theory in the inertial rangermin,r
,1 for weak to strong turbulence. However we found th
scattering still operates forr,rmin , contrary to the predicted
sudden drop of the scattering function; this facilitates
injection of particles in Fermi processes. For Larmor ra
larger than the correlation lengthr.1, scattering decrease
as a power law in rigidity unlike the predicted sudden dr
of g. Therefore high rigidity particles still diffuse. On
should also mention that the lack of scattering encountere
weak turbulence theory for particles having pitch angle cl
to 90 ° is cured in strong enough turbulence.

The perpendicular diffusion turns out to be very differe
from the prediction of the quasilinear theory. Our investig
tion of the chaos of magnetic field lines characterized b
Kolmogorov length and a diffusion coefficient with spa
increment indicates that this process of magnetic diffus
governs the transverse diffusion of particles.

Our numerical experiment shows that the phenomenol
cal Bohm approximation, characterized here byg;0.5 and
D5aBr Lv with aB;0.7, only applies in a limited range o
rigidities 0.1&r&1, and only in the case of pure turbulen
h51. Many estimates in astroparticle physics, that rely
the Bohm conjecture, must be reconsidered.

The slow decreaseg}r24/3 of scattering for cosmic rays
with Larmor radius larger than the correlation length of t
magnetic field, which impliesD}r7/3, is of potential impor-
tance to the transport of high energy cosmic rays in our G
axy as well as ultrahigh energy cosmic rays in the inter
lactic medium.

The accurate knowledge of the transport coefficients
lows us to be more conclusive than before on the per
mances of Fermi acceleration in some astronomical sou
of high energy cosmic rays such as supernovae remna
super-bubbles and extragalactic jets. Using new Chan
data, the turbulence level and the maximum energy for e
trons and for cosmic rays can be determined. We confirm
difficulty to obtain energies larger than 1013 eV in superno-
vae remnants and shows that the ‘‘knee’’ range of the cos
ray spectrum could be accounted for by second order Fe
acceleration in super bubbles. We also confirm that FR1
such as Centaurus A, although radiating synchrotron i
rays, cannot produce UHE cosmic rays. On the contrary, F
jets can produce cosmic rays up to 1020 eV, but presumably
not more, owing to a fairly good confinement; however m
high energy cosmic rays escape before reaching the en
the jet. Hot spots of powerful radiogalaxies have alwa
been considered as a promising source, but we have fo
that, because of the low turbulence level implied by the s
chrotron cut off frequency, cosmic rays escape rapidly alo
the mean field lines by fast parallel diffusion and accele
tion is not effective aboveemax;1014 eV for a shock veloc-
ity bs.0.1.
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Our paper left open several important issues that we
currently investigating. In particular it seems crucial to i
vestigate in more detail the existence of subdiffusive regim
at low ridigities for which we have found evidence. The
regimes play a crucial role in the acceleration processe
perpendicular shocks@13#. Furthermore, we have describe
magnetic turbulence as an ensemble of magnetostatic m
distributed according to a power law spectrum. This appro
mation is justified by the small Alfve´n velocity when com-
pared to the velocity of the particles. However it would
interesting to investigate the effect of temporal and spa
intermittency on the transport properties. Finally we are c
rently investigating the transport properties of particles
nonisotropic turbulence as may be encountered in the vi
ity of a shock wave, in particular in the downstream mediu
The consequences on Fermi acceleration will be presente
a forthcoming paper.

APPENDIX A: THEORETICAL APPROACH

The diffusion resulting from the random variations of th
momentum due to the irregular magnetic field can be form
ized as follows. Energy conservation, and thusp conserva-
tion, allows to treat the problem as random rotations of
unit vectoru such thatp5pu: u(t)5R(t,t0)u(t0). Assum-
ing that the correlation functions of the components ofu are
integrable over a characteristic timets, the diffusion coeffi-
cients are given by

Di j 5v2E
0

`

^ui~ t !uj~ t1t!&dt. ~A1!

The correlation matrix is derived by making the appropria
average, after solving the stochastic equation:

u̇5V~ t !u ~A2!

where the gyromatrixV(t)5sgn(q)(aba(t)Ja , ba(t) be-
ing the reduced components of the magnetic field exp
enced by the wandering particle andJa is a 333 matrix,
with components (Ji) jk5e i jk , wheree i jk is the fully anti-
symmetric Levi-Civita tensor, ande123[1.

Note that theJa are generators of a Lie algebra such th

JaJb5eb ^ ea2dabI d ~A3!

where I d represents the identity matrix,Ja
252Pa

' and
JaJb2JbJa5«abgJg , where$ea% is the orthonormal basis
Pa

' the orthogonal projector over the plane transverse to

directiona. We haveb15b̃1 , b25b̃2, andb35b01b̃3, with

^b̃2&5h and b0
2512h. Moreover, b̃(t)5b̃@x01rj(t)#,

with j̇5u. The time variable is measured in Larmor tim
units, the space variables are reduced toLmax and wave num-
bers are accordingly dimensionless and varies from 1
1/rm , whererm[kmin /kmax5Lmin /Lmax. We make the three
following assumptions:

~i! The random process becomes stationary beyond
correlation timets.
2-12
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~ii ! The random process can be approximated by
Markoff process beyond the integration timets.

~iii ! The random processb̃(t) is supposed to be specified
For instance, it is Gaussian with a known correlation fun
tion ^b̃(t)•b̃(t8)&[G(t2t8).

Assumptions~i! and~ii ! allow to calculate the correlation
function with an average matrix that describes the relaxa
of the correlations:

^ui~ t !uj~ t1t!&5R̄i j ~t!^ui~ t !uj~ t !& ~A4!

where R̄i j (t)5^Ri j (t1t,t)&. Assumption~iii ! is not exact,
of course; however the numerical experiments provide c
relation functions that allow to get a good ‘‘guess.’’ Then t
theoretical method allows to calculate the solution throu
iterations, starting with a Gaussian approximation, and t
estimating, if necessary, non-Gaussian corrections, give
skewness factor.

The formal solution reads

R̄~ t,t0!5K T expF E
t0

t

dtV~t!G L , ~A5!

where the symbolT represents the ‘‘time ordering operato
that organises the expansion of the exponential operato
products of non commutative operators that are in chro
logical order. The result can be factorized as the produc
the unperturbed rotation in the mean field times some re
ation operator:

R̄~ t,t0!5R0~ t2t0!•K TexpF E
t0

t

dtṼ~t!G L , ~A6!

with Ṽ(t)[R0
21(t2t0)dV(t)R0(t2t0) ~see @28–30# for

technical details!.

1. Quasilinear approximation h™1

For h small and for a broad magnetic spectrum insurin
short correlation time of the random force compared to
scattering time, the quasilinear theory applies@5#. This al-
lows to make two approximations. First, the relaxation o
erator can be calculated to the lowest order, the so-ca
‘‘Bouret approximation’’ @29,30#, which corresponds to a
summation of all the ‘‘unconnected diagrams:’’

R̄~ t !5e(V01M )t ~A7!

with

M5E
0

`

dt(
a

^b̃a~ t !b̃a~ t2t!&JaR0~t!Ja . ~A8!

The simplest way to derive this result is to linearize the e
lution equation forR(t,t0):

d

dt
dR5V0dR1dVR̄1•••, ~A9!
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which one then solves to lowest order fordR as a function of
dV and inserts the result in the evolution equation forR̄.
Then we use the isotropy of the spectrum to obtain

M5
1

3E0

`

dtG~t!(
a

JaR0~t!Ja . ~A10!

The sum of operators can be simplified to

(
a

JaR0~t!Ja522 cosv0tP i2~11cosv0t!P'

2sinv0tJ3 , ~A11!

wherev0 is the reduced Larmor pulsation in the mean fie
thusv05A12h.

Second, the correlation function of the magnetic irreg
larities experienced by the particles is calculated with unp
turbed trajectories

G~t!.G0~t!5E d3k

~2p!3
S3D~k!eirk•j 0 ~t! ~A12!

wherej0(t)5*0
t dt8R0(t8)•u(0), andS3D , as the notation

indicates is the three-dimensional power spectrum in Fou
space. These two calculations, thanks to commutation p
erties, lead to a matrix of the form

R̄~ t !5R0~ t !exp@2giP it2g'P't2g0J3t#. ~A13!

The factorsg are small numbers of orderh that contrains the
usual resonances of the quasi linear theory inpd(kirumu
2nv0). These resonances come from the cosine and
factors in Eq.~A11! and from the expansion into a Fourie
sequence innv0 of the exponential involved inG0(t), see
Eq. ~A12!, which introduces Bessel functions of all order
However, in pratice, only the main resonances forn561
are retained because the higher resonances involve sh
and shorter wavelengths which contain less and less en
for usual power law spectra. The contribution inJ3 modifies
the gyropulsation in the rotation matrixR0(t) and therefore
is unimportant. We finally retain the following result:

R̄~ t !5e2gitP i1e2g'tR0
'~ t !, ~A14!

whereR0
'(t) is the product of the rotation and the transver

projector. We thus obtain the unexpected result that the tra
verse relaxation is longer than the parallel relaxation si
gi52g' . Then the correlation functions are obtained by a
eraging overu(0) and there comes a major problem of qu
silinear theory because the functionsg are proportional to
h(rumu)b21 for umu.mm[rm /r and vanish forumu<mm
because of the lack of resonance. This introduces long
contributions to the correlation functions. This is the sym
tom of the ‘‘sticky’’ regime for pitch angles close to 90 ° tha
tends to dominate the diffusion coefficients; which requi
to take into account mirroring effects and/or overlapping
the resonances form.0 close tomm and those form,0
2-13
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close to2mm , as suggested in@31#. This difficulty disap-
pears in strong turbulence and for large enough Larmor ra

2. Theoretical hints with no mean field

The fully deductive theory of this regime is quite difficul
However some attempt can be proposed in the case w
g,1, i.e., tL,ts, when the correlation time@decay time of
G(t)# is shorter than the scattering time. Thus, for a tim
longer than the correlation time, we can keep part of
quasilinear theory, namely the expression of the relaxa
operator involving the integral overG(t). Technically, this
corresponds to the summation of the unconnected diagr
of the expansion ofR̄(t,t0) in Eq. ~A5!, the other diagrams
~‘‘nested’’ and ‘‘crossed’’! being of smaller orders. Therefor
the correlation functionsCi j (t) asymptotically decay like
e2g

*
t and

g.g* .
2

3E0

`

G~t!dt. ~A15!

Now the main difference comes from the estimation of
correlation function of the field experienced by the particl

G~t!.E d3k

~2p!3
S3D~k!^eirk•j(t)&. ~A16!

We propose the following heuristic estimate. Because
particles follow the field lines when their Larmor radius
smaller than the wavelength of the modes, we consider o
the modes such thatkr.1. The dominant contribution in the
averaged exponential is then for short time,j(t).tu(0).
Because of the random distribution ofu(0) over the unitary
sphere, we get

G~t!.E
kr.1

S~k!
sinkrt

krt
dk. ~A17!

A similar result is obtained with a Gaussian evaluation of
average
of

,
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^eirk•j(t)&5expF2
1

3
k2r2tE

0

t

C~t! dtG . ~A18!

Inserted into the integral over the spectrum~restricted tok
>1/r), it leads to

G~t!.E
k.1/r

dkS~k!expF2
1

3
k2r2tE

0

t

C~t8!dt8G .
~A19!

In the integral,*0
tC(t8)dt8 can be approximated byt for

t,ts (51/g in reduced units! and by 1/g for t.ts. There-
fore

g.
2

3Ek.1/r
dkS~k!FA3p

2kr
FS kr

g D1
3g

k2r2
e2k2r2/3g2G ,

~A20!

whereF(x)5(2/Ap)*0
xe2y2

dy. When g is small, because
kr>1, we get a simple result close to the previous one:

g.Ap

3Ek.1/r
dk

S~k!

kr
. ~A21!

This Gaussian evaluation indicates the error made by
previous assumption. Thus, for smallr, we obtain the exten-
sion of the quasilinear result, namelyg;rb21, and for r
.1 to g;1/r. These two approximations are in agreeme
with the numerical experiments, except that the measu
drop is in r21.3 instead ofr21 here. Now the range ofr
values whereg is on the order of unity corresponds to th
‘‘Bohm estimate,’’ which is, in fact, the maximum value ofg
achieved forr;1 only. We thus propose the following fina
estimate for the scattering function:

g.
p

3Ekr.1

S~k!

kr
dk. ~A22!

The error on the coefficient is of order ten percent.
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