

## **PRISM**

Science case and mission concept

Jacques DELABROUILLE for the PRISM team



#### Context and calendar

ESA call for proposed *science areas* for the next two L-class missions, L2 (≈2028) and L3 (≈2034).

#### Came as a surprise:

- Call issued early March,
- White paper due May 24th
- Open workshop September 3<sup>rd</sup> 4<sup>th</sup> in Paris
- Selection of two science areas for L-class missions in October
- Before the call for the next M-class mission (2014, for a launch ≈ 2027)!

#### Budget (rather ambitious):

- 900 million euro (ESA cost)
- Instruments from national space agencies
- Up to 20% foreign (non-European) participation



# A proposed L-class ESA mission

IDEA: survey the complete sky in total intensity and polarisation from 30 GHz to 6 THz with two instruments jointly operated:

- A polarimetric imager with a 3.5 m mirror actively cooled to 4 K
  - 32 large frequency channels with Δv/v ≈ 0.25
  - ≈300 narrow bands with  $\Delta v/v \approx 0.025$
- An absolute spectro-photometer with a 50 cm mirror, and two operation modes ( $\Delta v$ =0.5 GHz and  $\Delta v$ =15 GHz), for two compromises between spectral resolution and sensitivity.
  - Measure the zero-level of maps at all frequencies
  - Absolute calibration of the polarimetric imager on sky data

IDEA: a few well-identified areas for science breakthrough + a legacy survey useful for many scientific applications, with a very large discovery potential.



# Science case: why PRISM?

- Primordial CMB B-modes, high precision CMB T (absolute!) and E
- CMB spectral distortions
  - thermal history, energy exchanges between CMB and matter
  - reionisation, decaying dark-matter particles, small scale primordial P(k)
- 3D structures:
  - A complete census of galaxy clusters (hot baryons and mass up to z>3)
  - CMB lensing (projected mass)
  - The CIB and dusty galaxies (up to z>6) dust, AGNs and interplay, P(k) in shells
- 3D cosmic velocity flows
- All phases of the galactic interstellar medium:
  - Dust (thermal, spinning, size and chemical composition)
  - Cosmic rays (synchrotron components)
  - Gas (neutral and ionised), free-free, atoms and molecules, molecular clouds,
  - Magnetic field via polarisation of dust (and synchrotron)



## The PRISM mission concept

http://arxiv.org/abs/1306.2259

Polarised
Radiation
Imaging and
Spectroscopy
Mission





# Scanning strategy





# The polarimetric imager

- The polarimetric imager (PIM) is designed to map the full sky brightness fluctuations in intensity and polarisation
  - in as many bands as possible between 30 GHz and 6 THz
  - with the best possible angular resolution and sensitivity
- Compromise between sensitivity and spectral resolution
  - 50% of detectors in 32 broad-band channels with  $\Delta v/v \approx 0.25$
  - 50% of the detectors in 300 narrow-band channels with  $\Delta v/v \approx 0.025$
- Compromise between sensitivity and angular resolution
  - For the moment, angular resolution is preferred (single mode detectors at the diffraction limit).
  - Can be reconsidered for the narrow-band detectors (to map faint spectral lines at high frequency)



# The polarimetric imager

|           |                                    | main molec. & atomic lines                | per det<br>remin |              | er det<br>remin | N-2018       | $\theta_{\mathrm{fwhm}}$ | $n_{det}$ | $\Delta \nu / \nu$ | range   | $\nu_0$ range | ν <sub>0</sub> |
|-----------|------------------------------------|-------------------------------------------|------------------|--------------|-----------------|--------------|--------------------------|-----------|--------------------|---------|---------------|----------------|
|           |                                    |                                           | $\mu K_{CMB}$    | $\mu K_{RJ}$ | $\mu K_{CMB}$   | $\mu K_{RJ}$ |                          |           |                    | GHz     | GHz           |                |
| olo oti o | 1                                  |                                           | 89.7             | 87.6         | 63.4            | 61.9         | 17'                      | 50        | .25                | 26-34   | 30            |                |
| alactic   | G                                  |                                           | 84.5             | 81.7         | 59.7            | 57.8         | 14'                      | 100       | .25                | 31-41   | 36            |                |
| nission   | l e                                |                                           | 79.9             | 76.2         | 56.5            | 53.9         | 12'                      | 100       | .25                | 38-48   | 43            |                |
|           |                                    |                                           | 75.9             | 71.0         | 53.7            | 50.2         | 10'                      | 150       | .25                | 45-59   | 51            |                |
|           | <b>1</b>                           |                                           | 71.9             | 65.2         | 50.8            | 46.1         | 8.2'                     | 150       | .25                | 54-70   | 62            |                |
|           |                                    |                                           | 68.6             | 59.4         | 48.5            | 42.0         | 6.8                      | 150       | .25                | 65-85   | 75            |                |
| CMB       |                                    | HCN & HCO <sup>+</sup> at 89 GHz          | 66.0             | 53.8         | 46.7            | 38.0         | 5.7'                     | 200       | .25                | 78-100  | 90            |                |
|           |                                    | CO at 110-115 GHz                         | 64.4             | 48.8         | 45.6            | 34.5         | 4.8'                     | 250       | .25                | 95-120  | 105           |                |
|           |                                    |                                           | 63.4             | 40.4         | 44.9            | 28.6         | 3.8'                     | 300       | .25                | 120-150 | 135           |                |
| 0.7       | $\mathbf{I} \mathbf{I} \mathbf{I}$ |                                           | 64.3             | 34.5         | 45.5            | 24.4         | 3.2'                     | 350       | .25                | 135-175 | 160           |                |
| SZ        | $\mathbf{I}$                       | HCN & HCO <sup>+</sup> at 177 GHz         | 66.6             | 29.4         | 47.1            | 20.8         | 2.8'                     | 350       | .25                | 165-210 | 185           |                |
|           | $\mathbf{I}$                       | THE PROPERTY OF THE PROPERTY.             | 68.6             | 26.7         | 48.5            | 18.9         | 2.5'                     | 350       | .20                | 180-220 | 200           |                |
| <b>^</b>  | $\mathbf{I}$                       | CO at 220-230 GHz                         | 71.9             | 23.4         | 50.9            | 16.5         | 2.3'                     | 350       | .25                | 195-250 | 220           |                |
|           | $\mathbf{I}$                       | HCN & HCO <sup>+</sup> at 266 GHz         | 82.8             | 17.3         | 58.5            | 12.2         | 1.9'                     | 350       | .25                | 235-300 | 265           |                |
| CIB       | $\mathbf{I}$                       | F-12-00-100-100-100-100-100-100-100-100-1 | 94.9             | 13.6         | 67.1            | 9.6          | 1.7'                     | 350       | .20                | 270-330 | 300           |                |
|           |                                    | CO, HCN & HCO <sup>+</sup>                | 103              | 11.8         | 73.2            | 8.4          | 1.6'                     | 350       | .25                | 280-360 | 320           |                |
|           |                                    |                                           | 151              | 7.0          | 107             | 4.9          | 1.3'                     | 350       | .20                | 360-435 | 395           |                |
|           |                                    | CO, HCN & HCO+                            | 221              | 4.4          | 156             | 3.1          | 1.1'                     | 350       | .25                | 405-520 | 460           |                |
|           |                                    | C-I, HCN, HCO+, H2O, CO                   | 420              | 2.3          | 297             | 1.6          | 55"                      | 300       | .25                | 485-625 | 555           |                |
| T         |                                    | CO, HCN & HCO+                            | 990              | 1.2          | 700             | 0.85         | 46"                      | 300       | .25                | 580-750 | 660           |                |



# The polarimetric imager

Galactic emission

|      | 1000000   | C 75 |     | Š cerp | nKRJ | kJy/sr | nK <sub>RJ</sub> | kJy/sr |                   |
|------|-----------|------|-----|--------|------|--------|------------------|--------|-------------------|
| 800  | 700-900   | .25  | 200 | 38"    | 483  | 9.5    | 683              | 13.4   |                   |
| 960  | 840-1080  | .25  | 200 | 32"    | 390  | 11.0   | 552              | 15.6   |                   |
| 1150 | 1000-1300 | .25  | 200 | 27"    | 361  | 14.6   | 510              | 20.7   |                   |
| 1380 | 1200-1550 | .25  | 200 | 22"    | 331  | 19.4   | 468              | 27.4   | N-II at 1461 GHz  |
| 1660 | 1470-1860 | .25  | 200 | 18"    | 290  | 24.5   | 410              | 34.7   |                   |
| 1990 | 1740-2240 | .25  | 200 | 15"    | 241  | 29.3   | 341              | 41.5   | C-II at 1900 GHz  |
| 2400 | 2100-2700 | .25  | 200 | 13"    | 188  | 33.3   | 266              | 47.1   | N-II at 2460 GHz  |
| 2850 | 2500-3200 | .25  | 200 | 11"    | 146  | 36.4   | 206              | 51.4   |                   |
| 3450 | 3000-3900 | .25  | 200 | 8.8"   | 113  | 41.4   | 160              | 58.5   | O-III at 3393 GHz |
| 4100 | 3600-4600 | .25  | 200 | 7.4"   | 98   | 50.8   | 139              | 71.8   |                   |
| 5000 | 4350-5550 | .25  | 200 | 6.1"   | 91   | 70.1   | 129              | 99.1   | O-I at 4765 GHz   |
| 6000 | 5200-6800 | .25  | 200 | 5.1"   | 87   | 96.7   | 124              | 136    | O-III at 5786 GHz |

CIB & dusty galaxies



## The spectrophotometer

- The absolute spectrophotometer (ASP) is designed both to
  - measure the absolute sky emission between 30 GHz and 6 THz
  - serve as an absolute on-sky calibrator for the PIM
- Main idea: complementarity
  - -The spectrophotometer measures the I=0 mode
  - -Both the ASP and the PIM measure modes from l=1 to l≈100 (Intensity)
  - -The PIM measures modes up to l≈6000 or more in Intensity and Polar
- Compromise between sensitivity and spectral resolution
  - -Two operating modes: high resolution for matching band with PIM (by coadding ASP high-res channels) and for spectral line survey, low resolution for sensitivity to CMB.



### The spectrophotometer

| band<br>(GHz) | resolution<br>(GHz) | $A\Omega$<br>(cm <sup>2</sup> sr) | background<br>(pW) | $NEP\nu$ $(W/m^2/sr/Hz \times \sqrt{s})$ | global 4-yr mission<br>sensitivity (W/m <sup>2</sup> /sr/Hz) |
|---------------|---------------------|-----------------------------------|--------------------|------------------------------------------|--------------------------------------------------------------|
| 30-6000       | 15                  | 1                                 | 150                | $1.8 \times 10^{-22}$                    | $1.8 \times 10^{-26}$                                        |
| 30-500        | 15                  | 1                                 | 97                 | $7.0 \times 10^{-23}$                    | $7.2 \times 10^{-27}$                                        |
| 500 - 6000    | 15                  | 1                                 | 70                 | $1.7 \times 10^{-22}$                    | $1.7 \times 10^{-26}$                                        |
| 30-180        | 15                  | 1                                 | 42                 | $3.5 \times 10^{-23}$                    | $3.6 \times 10^{-27}$                                        |
| 180-600       | 15                  | 1                                 | 57                 | $6.3 \times 10^{-23}$                    | $6.5 \times 10^{-27}$                                        |
| 600-3000      | 15                  | 1                                 | 20                 | $7.4 \times 10^{-23}$                    | $7.6 \times 10^{-27}$                                        |
| 3000-6000     | 15                  | 1                                 | 28                 | $1.6 \times 10^{-22}$                    | $1.6 \times 10^{-26}$                                        |

#### Martin-Puplett FTS

Three possible configurations, best option TBD:

- Full band at both outputs
- Half the band at each output
- Half the band at each output + dichroic to split the band on two detectors



#### CMB B-modes





# CMB lensing





## CMB spectral distortions





## The ultimate SZ survey



TOTAL clusters detected: ≈ 10<sup>6</sup>

TOTAL peculiar velocities: ≈ a few 10<sup>5</sup>

TOTAL relativistic SZ: ≈ a few 10<sup>4</sup>



#### Cosmology with SZ clusters





#### Cosmology with SZ clusters



Fig. 36. 2D marginalized posterior distributions for  $w_0$  and  $w_a$ , for the data combinations Planck+WP+BAO (grey), Planck+WP+Union2.1 (red) and Planck+WP+SNLS (blue). The contours are 68% and 95%, and dashed grey lines show the cosmological constant solution.

**WARNING: illustrative only!** 



# Detecting the cosmic web?

25 h<sup>-1</sup> Mpc Planck ΛCDM



In filaments:  $T \approx 10^5 - 10^7 \text{ K}$  $\rho_{gas} \approx 5 - 200 \times \rho_{gas}^-$ 

More work needed...



# High redshift dusty galaxies



Detect thousands of strong lenses (case for full sky)

Use the many frequency bands

- to separate dust from CIB (cover all peaks)
- to identify the nature of the sources
- to measure the total bolometric luminosities
- to measure photometric redshifts
- to bin the CIB emission in redshift shells

#### Dusty galaxies at z = 0.1-7:

ARP 220 scaled to  $L_{IR}$  =  $10^{12}L_{\odot}$  SMM J2135-0102 (z ≈ 2.3) scaled to  $L_{IR}$  =  $1-3 \times 10^{13}L_{\odot}$ 

- Typical  $L_{IR}$  =  $10^{13}L_{\odot}$  type 2 QSO -

- 3C 273 blazar





#### Correlations

- Between CIB maps across frequencies: separate CIB in redshift shells, push down the confusion limit
- CIB (in redshift shells) lensing: growth of structures
- Clusters (in z-Y bins) lensing: Y-M relations for clusters
- Clusters sources (by types): halo population (by type)
- SZ map (after masking clusters) CIB (by shells): sources in cosmic web, hot gas in galaxy haloes
- CMB tracers of mass: ISW

All of this requires statistics: case for a full sky survey.



#### The Galactic ISM

- A global view of the ISM various components
- Dust polarisation: map the galactic magnetic field (5-10 arcsec resolution)
  - Investigate its role in star formation
  - Interplay between turbulence, gravity, and galactic magnetic field
- Nature of dust
  - Sizes and emissivity of grains
  - alignment mechanisms
  - composition (graphite / silicates)
- Physical and chemical processes
  - Spectral lines trace matter in various phases
  - Line ratio constrains density and temperature
  - Velocities ? (TBC)





# The PRISM Legacy

PRISM will provide *hundreds of intensity and polarization maps*, assembling a legacy archive useful for almost all branches of astronomy for decades to come. Combining low resolution spectrometer data and high resolution full-sky polarized maps, PRISM will deliver a full spectropolarimetric survey of the complete sky from 50 µm to 1 cm.





### Synergies

- Cross-correlations / complementarity with other surveys
  - Euclid (population of cluster haloes, lenses of high-z FIR galaxies)
  - SKA (complementarity in frequency, reionisation, radio sources, neutral hydrogen redshifts of objects)
  - eROSITA (common clusters at z<1, X-ray stacking at z>1)
  - LSST
- Follow-up with and large ground-based facilities pointed observations
  - Cluster substructures at high resolution from the ground
  - ALMA: complementarity in scales, follow-up spectra
  - CCAT: cluster velocities and substructures, temperatures (pointed + survey)
  - Validation of separation of CIB in redshift shells on patches at high resolution
- Follow-up with other space missions
  - X-rays (e.g. Athena or US equivalent)
  - SZ effect (e.g. Millimetron)
  - Galactic and extragalactic infrared targets (future FIR interferometer)
- PRISM: a very complete survey by itself, + an enhancer/improver of other instruments



## Is it feasible?

- ✓ Full design still TBD/TBC, but nothing very complicated no deployable telescope, no formation flight, no futuristic designs, no moving parts.
- ✓ Detectors
  - Technologies exist at TRL = 5+
  - Arrays of thousands of TES detectors, antenna coupling, channellizers
  - Build on Planck and Herschel experience + ground-based & balloon-borne exp.
- ✓ Cold telescope
  - Developed for SPICA for flight in early 20s, detailed cooling chain still TBD
- ✓ Scan strategy
  - Similar to WMAP, EPIC, SAMPAN designs
- ✓ Simple deployable screens + one solid inner shield TBD
- ✓ Small ancillary spacecraft (optional, TBC)
  - Data transmission 40+ Mbit/s (e.g. Gaia, phased array)
  - In flight calibration



# Why a space mission?

Atmospheric transmission and emission

**Systematics** 

Complete survey







## Impact of the PRISM proposal

- In a way, the PRISM white paper is the showcase of our science (CMB cosmology FIR)
  - measure the extent of the community and the interest these scientific objectives generate (supporters of the proposal)
  - measure the scientific value of the topics we advertise (through the review process)
- If selected, this science case proposal will
  - Stimulate the need for appropriate technological developments
  - Stimulate the need for pathfinder observations
  - Stimulate theoretical developments to consolidate and extend the science case
  - Encourage students to work in this field (with clear perspectives ahead)
- It is a great opportunity for the CMB, for cosmology, and for FIR observations.



# We need your support!

If you have not done so yet, please support this science case by signing in on the website

http://www.prism-mission.org



If you'd like to be involved in the next steps, let us know! Questions? ideas? suggestions? Let us know!

